HIV Protease Inhibitory Bis-benzamide Cyclic Ureas: A Quantitative Structure-Activity Relationship Analysis

Wendell W. Wilkerson,* Emeka Akamike, Walter W. Cheatham, Andrea Y. Hollis, R. Dale Collins, Indawati DeLucca, Patrick Y. S. Lam, and Yu Ru
DuPont Merck Pharmaceutical Company, Chemical and Physical Sciences, E500/ 3203 Experimental Station, P.O. Box 80500, Wilmington, De aware 19880-0500

Received April 10, 1996^{*}

Abstract

A series of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted cyclic urea 3-benzamides has been synthesized and evaluated for HIV protease inhibition and antiviral activity. Some of these benzamides have been shown to be potent inhibitors of HIV protease with $\mathrm{K}_{\mathrm{i}}<0.050 \mathrm{nM}$ and $\mathrm{C}_{90}<20 \mathrm{nM}$ for viral replication and, as such, may be useful in the treatment of AIDS. The synthesis and quantitative structure-activity relationship for this benzamide series will be discussed.

Introduction

The viral-encoded protease for human immunodeficiency virus (HIV) is responsible for the processing of viral polyprotein precursors to their mature polypeptides. Since correct processing of the viral polypeptides is essential for the production of infectious virus, HIV protease represents a potential target for therapeutic agents which may prove beneficial in the treatment of AIDS. ${ }^{1}$

We had previously determined (data not included) that for the cyclic ureas, ${ }^{2-4}$ the best HIV protease inhibitors (Figure 1) resulted when P2 and P2' were substituted benzyl (-CH 2 -Ph-X), where the regiochemistry of X showed that the 3 -isomer produced a better inhibitor than the 4 -isomer that was far superior to the 2 -isomer. We further determined that a hydrogen bonddonating (HBD) X produced a more potent HIV protease inhibitor than the corresponding hydrogen bond acceptor (HBA). The importance of the HBD was demonstrated early in the project as illustrated by the comparison between the highly potent secondary amide 6 ($\mathrm{X}=\mathrm{CONHMe}, \mathrm{K}_{\mathrm{i}}=0.066 \mathrm{nM}$) and the corresponding amide 31 ($\mathrm{X}=\mathrm{CON}(\mathrm{Me})_{2}, \mathrm{~K}_{\mathrm{i}}=1.900 \mathrm{nM}$) (see Table 1). The implication was that a HBD was necessary but not sufficient for potent K_{i}. Examination of other physicochemical characteristics suggested that K_{i} is related to the lipophilicity of the inhibitor (ClogP), the electronic effect of the X-substituent (σ), and the hy-drogen-bonding character [HB] of X. This relationship can be expressed by eq 1 :

$$
\begin{equation*}
-\log \left(\mathrm{K}_{\mathrm{i}}\right)=\mathrm{a}(\mathrm{Clog} \mathrm{P})+\mathrm{b}\left(\sigma_{\mathrm{x}}\right)+\mathrm{c}[\mathrm{HB}]+\mathrm{C} \tag{1}
\end{equation*}
$$

where $\mathrm{X}=\mathrm{H}, 3$ - and 4-alkyl, aryl, substituted aryl, CF_{3}, $\mathrm{OR}, \mathrm{OCF}_{3}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OH}, \mathrm{CHO}, \mathrm{COR}^{\prime}$, $\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CONH}_{2}, \mathrm{CONHR}{ }^{\prime}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{NHR}^{\prime}$, $\mathrm{NHAc}, \mathrm{SR}, \mathrm{SOnR}^{\prime}$, and $\mathrm{B}(\mathrm{OH})_{2}$.

One of the compounds discovered early in this work was $\mathbf{2}\left(\mathrm{X}=\mathrm{CONH}_{2}\right)$. The benzamide $\mathbf{2}$ was found to have excellent protease inhibitory activity ($\mathrm{K}_{\mathrm{i}}=0.039$ nM) but was determined to have poor antiviral activity $\left(\mathrm{IC}_{90}=708.6 \mathrm{nM}\right)$. This study was initiated in an attempt to improve on both the protease inhibition and

[^0]

I

II

III

Figure 1. Lead progression to the carboxamides.
the antiviral activity of the benzamide series by applying classic quantitative structure-activity relationship (QSAR) techniques.

Chemistry

Structures, methods of amide bond formation, and corresponding physical data for the compounds in this study are shown in Table 1. For this study, 2 was synthesized from the corresponding nitrile using the method described by Noller ${ }^{5}$ (see Scheme 1). Most of the other compounds in this study were synthesized by activating the carboxyl group of the cyclic ureas bisbenzoic acid (1c, see Scheme 2) followed by reaction with the appropriate amine ($\mathrm{R}-\mathrm{NH}_{2}$).

Carboxyl-activating conditions involved reaction with N, N '-dicyclohexylcarbodiimide (DCC) and N-hydroxybenzotriazole (HOBt) (DCC-HOBt method), reaction with (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP, Castro's reagent), ${ }^{6}$ or oxalyl chloride. The 'Acid Chloride Method', when conducted with oxalyl chloride under extremely anhydrous conditions, was able to effect some of the more difficult acylations. These approaches are illustrated in Scheme 3. Most of the syntheses, where R was aromatic, were accomplished with difficulty as evidenced by extremely long reaction times and poor yields (data not included). We believe that these results were caused by the poor nucleophilicity of the amine ($\mathrm{R}-\mathrm{NH}_{2}$). By chromatographic methods (TLC and HPLC), we were able to observe the rapid formation of HOBt active ester.

Table 1. Pharmacological, Structural, and Physical Chemical Data for Compounds 2-31

${ }^{*} \mathrm{~K}_{\mathrm{i}} \mathrm{SD}< \pm 40 \% .{ }^{* *} \mathrm{C}_{90} \mathrm{SD}< \pm 36 \%$. a BOP, (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; DCC-HOBt, $\mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexylcarbodiimide and N-hydroxybenzotriazole; acid chloride with oxalyl chloride; WSC, 1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride (water soluble carbodiimide); Weinreb, reaction of the amine with trimethylaluminum followed by reaction with 1b. ${ }^{\text {b }}$ All compounds except $\mathbf{2 8}$ were analyzed for C, H, and N , and analytical results were within $\pm 0.4 \%$ of the theoretical values. c The only disubstituted amide in the data set and was not used in any of the regression models.

Scheme 1. Synthetic Approach to 2

However, acylation of the amine was extremely slow and incomplete in some cases. We were able to isolate by
column chromatography and fully characterize representative samples of the HOBt ester and the mixed HOBt ester-amide.

Carboxyl activation through the N -hydroxysuccinimide ester(s) has al so been attempted to find the ester(s) even more resistant to amide formation. Amide bond formation with poorly nucleophilic amines was accomplished in moderate to good yields by activation of the amine using a modification of the method reported by Basha et al. ${ }^{7}$ The ester $\mathbf{1 b}$ was reacted with excess dimethylaluminum amide (($\left.\mathrm{CH}_{3}\right)_{2}$ AINHR) prepared from equal molar amounts of trimethylaluminum (($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{Al}\right)$ and the amine ($\mathrm{R}-\mathrm{NH}_{2}$) in dichloroethane and refluxing until chromatographic methods indicated no $\mathbf{1 b}$ remained. The method is illustrated in Scheme 4 and is referred to as the Weinreb method. However, this approach was unsuccessful in cases where the aminecomplex was insoluble in dichloroethane. Compound $\mathbf{1 2}$

Scheme 2. Synthetic Approach to the Ester 1b and the Carboxylic Acid 1c

Scheme 3. Activated Carbonyl Approaches to the Benzamides

1c

Scheme 4. Synthetic Approach to the Amides Using a Modification of the Weinreb Procedure

was synthesized by the mixed anhydride method utilizing ethyl chloroformate and $\mathbf{1 c}$.

Pharmacology

The K_{i} values were determined with recombinant single-chain dimeric HIV protease and a fluorescent substrate (see Cheng et al. 8). The use of single-chain dimeric protease allows enzyme concentrations as low as 0.0625 nM to be used. Reaction products were separated by HPLC with a Pharmacia Mono Q anionexchange column, and the product was quantified by fluorescence. The ability of test compounds to block cleavage of theHIV-1 gag polyprotein was assessed with [${ }^{35}$ S]methionine-labeled in vitro translation product corresponding to gag p17 plus the first 78 amino acids
of gag p24 and recombinant HIV protease (PR) as described by Erickson-Viitanen et al. ${ }^{9}$ K ${ }_{\mathrm{i}}$ values were measured with 62.5-250 pM HIV PR dimer and 1-10 nM inhibitor. Each compound was assayed at least twice, and the mean values for the experimental compounds are reported in Table 1. The standard deviation (SD) for the assay has been found to be $< \pm 40 \%$. The K_{i} values for a series of reference compounds are also included in Table 1.
HIV RNA Assay. ${ }^{10}$ This assay determines cellassociated viral RNA levels 3 days after infection of susceptible T-cell lines grown in individual microtiter wells. Viral RNA was quantified by a sandwich hybridization assay; the first step of which was performed directly in crude infected cell lysates prepared in quinaldinium isothiocyanate. Levels of cell-associated viral RNA were shown to correlate with the yield of infectious virus, and this correlation formed the basis of the test. Antiviral potencies of a large series of compounds tested in this RNA hybridization assay correlated closely with potency values determined by a sensitive but slower and more labor-intensive yield reduction assay. Both laboratory strains and selected clinical isolates of HIV can be detected in this RNA hybridization assay. Results are reported as IC_{90} (the concentration of antiviral compound required to inhibit HIV RNA synthesis by 90%). Initial results are reported in nanomolar (nM) for structure-activity relationship (SAR) studies (Table 1). The assay provides a rapid, high-capacity assay for evaluating the potency of anti-HIV compounds. The standard deviation (SD) for the assay has been found to be $< \pm 37 \%$. The data obtained on reference compounds are listed in Table 1.
Cytotoxicity $\mathbf{T C}_{\mathbf{5 0}}$. Compound cytotoxicity was designated as TC_{50} which is defined as the concentration of compound that produced a 50% reduction in the number of viable cells as determined by the metabol ism of a tetrazolium dye. None of the compounds in this study had $\mathrm{TC}_{50}<50 \mu \mathrm{~g} / \mathrm{mL}$. A correct interpretation of the RNA assay requires that test molecules not be cytotoxic at RNA assay dose levels.

Statistical Methods and QSAR Parameters

Statistical analyses were conducted using J MP v3.0.2 by SAS Institute, Cary, NC. The statistical measures used are as follows: n, number of samples in the regression; r, correlation coefficient; s, root mean square error of the regression; and F-ratio.
Computer-generated lipophilicity of the molecule (ClogP) and bulk (CMR) were obtained using MedChem Software v3.0, Pomona College, Claremont, CA. Many of the parameters for the R -groups in Table 1 were not available from literature sources, which required us to derive other parameters that could be easily obtained and used in our attempt to derive QSAR expressions for protease inhibition (K_{i}) and viral replication (IC_{90}).
The hydrogen-bonding property of the R-group was indi cated by hydrogen bond donor (HBD), (1, 1); hydrogen bond acceptor (HBA), (0,1); and neither (0,0). The parameters for ionization potential (IP), energy of the highest occupied orbital (ϵ номо), energy of the lowest unoccupied orbital ($\epsilon_{\text {LUMO }}$), and molecular volume (MV) were obtained using SYBYL v6. 2 by Tripose Associates, Inc., St. Louis, MO, on a Silicon Graphics workstation. The molecules were minimized with Gasteiger Huckel

Table 2. Substituent Constants ${ }^{21}$ Used in Deriving Regression Eq 2 for HIV Protease Inhibitors 2-15a

compd	R	π	MR	σ_{1}	σ^{*}	F	R	L1	B1	B5	$\log \left(1 / \mathrm{K}_{\mathrm{i}}\right)$
2	H	0.00	0.10	0.00	0.49	0.00	0.00	2.06	1.00	1.00	1.409
3	NH_{2}	-1.23	0.54	0.12	0.62	0.08	-0.74	2.78	1.35	1.97	1.745
4	OH	-0.67	0.28	0.29	1.37	0.33	-0.70	2.74	1.35	1.93	1.699
5	OCH_{3}	-0.02	0.79	0.27	1.77	0.29	-0.56	3.98	1.35	3.07	1.347
6	CH_{3}	0.56	0.56	-0.04	0.00	0.01	-0.18	2.87	1.52	2.04	1.180
7	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	1.02	1.03	-0.01	-0.10	0.00	-0.15	4.11	1.52	3.17	0.678
8	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	1.53	1.50	0.01	-0.19	0.04	-0.19	4.11	1.90	3.17	0.237
9	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	1.55	1.50	-0.01	-0.12	0.01	-0.14	4.92	1.52	3.49	0.445
10	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	2.13	1.96	-0.04	-0.13	-0.01	-0.15	6.17	1.52	4.54	0.373
11	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	1.98	1.96	-0.07	-0.30	-0.02	-0.18	4.11	2.60	3.17	-0.380
12	$\mathrm{CH}_{2}-\mathrm{C}_{3} \mathrm{H}_{5}$	(1.39)	1.82	nd	0.01	nd	nd	5.14	1.52	4.36	0.130
13	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	(1.80)	0.97	0.16	0.92	0.15	-0.06	4.70	1.52	3.07	0.678
14	$\mathrm{CH}_{2} \mathrm{CN}$	-0.57	1.01	nd	1.25	0.17	0.01	3.99	1.52	4.12	1.201
15	Ph	1.96	2.54	0.12	0.60	0.12	-0.13	6.28	1.71	3.11	0.367
hypo-1	4-Pyr	0.46	2.30	0.24		0.21	0.23	5.92	1.71	3.11	
hypo- 2	2-Pyr	0.50	2.30	0.40		0.40	-0.23	6.28	1.71	3.11	

${ }^{\text {a }}$ Parentheses indicate not in the regressions, calculated from ClogP: $\pi=0.644 \mathrm{ClogP}-2.609 ; \mathrm{n}=12, \mathrm{r}^{2}=0.927, \mathrm{SE}=0.332, \mathrm{~F}=$ 126.618.

Table 3. Cross-Correlation Matrix for the Parameters in Eq 2

variable	π	F	B1
π	1.000	-0.530	0.620
F		1.000	-0.300
B1			1.000

charge, and the minimized structures were given MOPAC v5.011 charges (AM1, mmok, parasok, Mulliken atomic charge population). ${ }^{12,13}$

Discussion

Because of the potent antiprotease activity of $\mathbf{2}(\mathrm{R}=$ $\mathrm{H}, \mathrm{K}_{\mathrm{i}}=0.039 \mathrm{nM}$), a small set of amides (2-15) was synthesized and evaluated for antiprotease (K_{i}) and antiviral (IC_{90}) activity. For protease inhibitory activity ($\log 1 / \mathrm{K}_{\mathrm{i}}$), the substituent constants (see Table 2) for lipophilicity (π and π^{2}), size, bulk, volume, or sterics (MR, MR², and STERIMOL parameters L1, B1, and B5), and electronic effects (σ_{1}, σ^{*}, Swain-Lupton's F and R^{14}) were subjected to a stepwise 'multiple linear regression' (MLR) analysis. The result from this analysis was eq 2 which suggested that the π, F, and $B 1$ for the R-group

$$
\begin{align*}
& \log \left(1 / K_{\mathrm{i}}\right)_{2-15}=-0.337(\pm 0.044) \pi+ \\
& 0.591(\pm 0.382) \mathrm{F}-0.739(\pm 0.125) \mathrm{B} 1+ \\
& 2.210(\pm 0.192) \tag{2}\\
& \mathrm{n}=13, \mathrm{r}=0.983, \mathrm{~s}=0.134, \mathrm{~F}_{3,10}=87.945_{(0.0001)}
\end{align*}
$$

were important to activity. The cross-correlation matrix for the parameters in eq 2 is shown in Table 3.

Equation 2 suggested that decreasing lipophilicity, increasing the inductive effects, and keeping the B1 as small as possible will result in increased activity. Subsequent analyses showed that σ_{1} and σ^{*} could replace F without a loss in the significance of eq 2. Note that Martin ${ }^{15}$ has reported that $\sigma^{*}, \mathrm{~F}$, and R are related. The lack of a quadratic term for π and/or MR in eq 2 further suggested that this data set did not contain R-groups near the optima for these parameters.

Using these characteristics described by eq 2 as a guide, we prepared a data set of hypothetical compounds where the substituent parameters in Table 2 existed in the literature. ${ }^{16-18}$ In this hypothetical data set were the isomeric pyridines hypo-1 (where $\mathrm{R}=4$-Pyr) and hypo-2 (where 2-Pyr) with predicted K_{i} values of 0.122 and 0.097 nM , respectively. The pyridines were of
interest because of the possibility of influencing the lipophilicity, size, and/or electronic effects by making appropriate aromatic substitutions. Unfortunately, none of the anal ogues ($\mathbf{3}-\mathbf{1 5}$) of $\mathbf{2}$ met our antiviral criteria of an $\mathrm{IC}_{90}<30.0 \mathrm{nM}$; only $6\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{IC}_{90}=80.5 \mathrm{nM}\right)$ and $13\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CF}_{3}, \mathrm{IC}_{90}=92.5 \mathrm{nM}\right)$ came close.
In an attempt to determine the optimal regiochemistry of the aromatic nitrogen in the pyridine moiety, we synthesized the three isomeric pyridine derivatives hypo- $\mathbf{1}=16$ (where $\mathrm{R}=4$-Pyr), $\mathbf{1 7}$ (where $\mathrm{R}=3$-Pyr), and hypo- $\mathbf{2}=18$ (where $\mathrm{R}=2$-Pyr). The isomeric pyridine cyclic ureas had the same ClogP (6.70) and CMR (21.64). However, as protease inhibitors, 18 (K_{i} $=0.043 \mathrm{nM})$ was better than $\mathbf{1 7}\left(\mathrm{K}_{\mathrm{i}}=0.290 \mathrm{nM}\right)$ which was better than $\mathbf{1 6}\left(\mathrm{K}_{\mathrm{i}}=0.410 \mathrm{nM}\right)$. These results were very different from those predicted by eq 2 . Unexpectedly, $\mathbf{1 8}$ had met our biol ogical objectives. On the basis of these teachings, we concluded that the presence and regiochemistry of a potential hydrogen bond acceptor (pyridyl nitrogen) contributed to overall protease inhibition which in turn influenced viral replication inhibition. The best location for this HBA is ortho to the amide nitrogen as represented by $\mathbf{1 8}$ (2-Pyr) (see Figure 2). It is possible that the pyridyl nitrogen is acting as a base to form a salt bridge, influence the 'qual ity' of hydrogenbonding properties of the amide proton, or influence the pK a of the amide proton. Clearly the nitrogen is important as demonstrated by the contrast in activity of the phenyl carboxamide $\mathbf{1 5}\left(\mathrm{K}_{\mathrm{i}}=0.370 \mathrm{nM}, \mathrm{IC}_{90}=\right.$ 483.0 nM) and the 2-pyridinyl derivative $18\left(\mathrm{~K}_{\mathrm{i}}=0.043\right.$ $\mathrm{nM}, \mathrm{IC} 90=2.8 \mathrm{nM}$). Since the only difference among the three isomers was the placement of the pyridinyl nitrogen, it is possible that the nitrogen of the 2 -pyridine defined a new binding site with the enzyme as illustrated in Figure 2b. This potential HBA resulted in greater than predicted protease inhibition.

Having established that the 2-Pyr moiety produced the best anti-HIV activity, we next investigated the effect of substitutions on the 2-Pyr nucleus. A series of 2-picoline carboxamides (19, R = 2-(3-Me-Pyr); 20, R = 2-(4-Me-Pyr); 21, R = 2-(5-Me-Pyr); and 22, R = 2-(6-Me-Pyr)) was synthesized and evaluated. As can be seen in the data in Table 1, moving the methyl group from the 3-position to the 6-position resulted in improvements in K_{i} and IC_{90}. All four isomers have the same CMR, and only 19 has a different ClogP (6.08) from the other picolines ($\mathrm{Clog} \mathrm{P}=7.70$). Pharmacologi-
a

Asp30
i

Figure 2. (a) Proposed interactions between 18 and HIV protease active site and (b) proposed interaction between the enzyme active site and (i) isomeric pyridine nitrogen and (ii) 3 -substitution on the pyridine ring.
cally, 19 was determined to be different from the other three isomers. (Note that from this series and other carboxamides (not reported), the relationship between isomerism and potency is as follows: $6-\mathrm{Me} \geq 5-\mathrm{Me}>$ $4-\mathrm{Me} \gg 3-\mathrm{Me}$.) The results from the picoline series suggested that a pocket existed (size and/or lipophilicity limiting) as defined by the 5 -position on the pyridine ring (see Figure 2b). The less than anticipated activity of $\mathbf{2 5}(\mathrm{R}=3,5-\mathrm{di}-\mathrm{Cl}-\mathrm{Pyr})$ was further evidence for this conclusion. The importance of this structural property of the inhibitors was exemplified by the improvement in protease inhibition by $\mathbf{2 1}(\mathrm{R}=2-(5-\mathrm{Me}$-Pyr)) over $\mathbf{1 8}$ ($\mathrm{R}=2$-Pyr).

Replacing the $-\mathrm{CH}_{3}$ of $\mathbf{2 0}$ with $-\mathrm{CF}_{3}$ of $\mathbf{2 8}$ resulted in a loss of protease ($\mathrm{K}_{\mathrm{i}}=0.027 \mathrm{vs} 0.085 \mathrm{nM}$) and antiviral ($\mathrm{IC}_{90}=7.70$ vs 63.4 nM) potencies. The change resulted in an increase in ClogP (18\%), a smaller increase in CMR (5\%), and an upfield chemical shift of 0.51 ppm for the amide proton. All individually or in combination could be responsible for the reduction in potencies. The replacement of -H on $\mathbf{3 0}\left(\mathrm{K}_{\mathrm{i}}=0.152 \mathrm{nM}, \mathrm{IC}_{90}=220.3\right.$ nM) with $-\mathrm{CH}_{3}$ produced $27\left(\mathrm{~K}_{\mathrm{i}}=0.085 \mathrm{nM}, \mathrm{IC}_{90}=124.4\right.$ nM), which was a better anti-HIV compound. Increasing the size and lipophilicity of $\mathbf{1 8}$ with two methyl groups to give $\mathbf{2 3}$ or by adding one methyl to $\mathbf{2 0}$ or $\mathbf{2 1}$ to give $\mathbf{2 3}$ did not significantly change K_{i} or IC_{90} values. These results would suggest that for a given K_{i}, increasing lipophilicity while decreasing or maintaining the size of the R-group should improve translation (viral replication inhibition).

Compounds 19-23 are less electron deficient than 24 ($\mathrm{R}=2$-(5-Cl-Pyr), $\mathbf{2 6 [R = 2 - (5 - B r - P y r)] \text { , and } 2 5 (R =}$

2-(3,5-di-CI-Pyr)) because of the electron-withdrawing substituents. In terms of protease inhibition, 24 ($\mathrm{K}_{\mathrm{i}}=$ $0.012 \mathrm{nM})<26\left(\mathrm{~K}_{\mathrm{i}}=0.035 \mathrm{nM}\right)<25\left(\mathrm{~K}_{\mathrm{i}}=0.245 \mathrm{nM}\right)$, and similarly for viral replication, $\mathbf{2 4}\left(\mathrm{IC}_{90}=14.7 \mathrm{nM}\right)$ $<\mathbf{2 6}\left(\mathrm{IC}_{90}=28.2 \mathrm{nM}\right)<\mathbf{2 5}\left(\mathrm{IC}_{90}=43.0 \mathrm{nM}\right)$. The large drop-off in K_{i} for $\mathbf{2 5}$ may be associated with the 'steric hindrance' caused by the $3-\mathrm{Cl}$ substituent. For this small data set, we concluded that the introduction of an electron-withdrawing group on the azine did not enhance activity.

A comparison between $15\left(\mathrm{R}=\mathrm{Ph}, \mathrm{K}_{\mathrm{i}}=0.370 \mathrm{nM}\right.$, $\left.I C_{90}=483.0 \mathrm{nM}\right), 29\left(R=\right.$ Prz, $\mathrm{K}_{\mathrm{i}}=0.034 \mathrm{nM}, \mathrm{IC}_{90}=$ $3.5 \mathrm{nM}), 30\left(\mathrm{R}=2-\mathrm{Pym}, \mathrm{K}_{\mathrm{i}}=0.152 \mathrm{nM}, \mathrm{IC}_{90}=220.3\right.$ $n M)$, and $\mathbf{1 8}\left(\mathrm{R}=2\right.$-Pyr, $\left.\mathrm{K}_{\mathrm{i}}=0.043 \mathrm{nM}, \mathrm{IC}_{90}=2.8 \mathrm{nM}\right)$ further demonstrated that the nitrogen in the R-group was important for activity. The pharmacological difference between $\mathbf{2 9}$ and $\mathbf{3 0}$ was the first indication that ClogP and CMR may not be the main contributors to activity since both compounds had $\mathrm{Clog} \mathrm{P}=5.36$ and $C M R=21.21$. These two diazines differed only in the placement of the nitrogens in the aromatic nucleus which may contribute to different degrees of binding to the enzyme which resulted in different $\mathrm{K}_{\mathrm{i}} \mathrm{s}$. The Prz derivative was a better protease inhibitor than the Pym derivative, and 29 was a significantly better inhibitor of replication than 30. These results were added evidence that the placement of the nitrogen(s) in R was important for both enzyme inhibition and viral replication inhibition.
QSAR for $\log \left(\mathbf{1} / \mathbf{K}_{\mathbf{i}}\right)$. One of the major problems encountered in this study was the lack of published substituent constants for the R-groups which could be used in a classical (traditional) QSAR. What was needed was a set of parameters such as ClogP and CMR that could be calculated (semiempirical) and used in a multiple linear regression (MLR) analysis. ${ }^{21-23}$ By using geometry-optimized structures, we were able to generate a set of quantum mechanical constants for ionization potential (IP), energy of the highest occupied orbital (ϵ номо), energy of the lowest unoccupied orbital ($\epsilon_{\text {LUMO }}$), dipole moment (DM), and molecular volume (MV/100 and (MV/100)2), where ϵ номо $=-I P$ and $\epsilon_{\text {LUмо }}$ $=$ electron affinity (EA). Because we beli eved that the regiochemistry of the 2-Pyr nitrogen was important for activity, an indicator variable (I) was added to regression models for all compounds containing a nitrogen approximating that of the 2-Pyr nitrogen. These parameters along with the molecular parameters Clog^{2} 2, ClogP, CMR ${ }^{2}$, and CMR were used in a stepwise MLR to derive regression equations for K_{i} and IC_{90} for the carboxamides 2-30. This analysis produced eq 3 (see

$$
\begin{gathered}
\log \left(1 / \mathrm{K}_{\mathrm{i}}\right)_{2-30}=-1.273(\pm 0.512) \mathrm{IP}+ \\
0.076(\pm 0.021) \mathrm{Clog}^{2}-0.866(\pm 0.270) \mathrm{Clog} \mathrm{P}- \\
1.006(\pm 0.330) \mathrm{MV} / 100+0.990(\pm 0.184) \mathrm{I}+
\end{gathered}
$$

$$
\begin{equation*}
20.770(\pm 5.267) \tag{3}
\end{equation*}
$$

$C \log \mathrm{P}_{0}=5.697, \mathrm{n}=29, \mathrm{r}=0.864, \mathrm{~s}=0.349$,

$$
F_{5,23}=13.495_{(0.0001)}
$$

Chart 1) which contained the parameters for lipophilicity (Clog^{2} and Clog P), volume (MV/100), el ectronic (IP), and the indi cator variable (I). The cross-correlation matrix for eq 3 is shown in Table 5. The comparison of the predicted K_{i} values from eqs 3 and 2 was in good to excellent agreement ($n=13, r^{2}=0.797, s=0.278$).

Chart 1. Found vs Predicted Protease Inhibition Using Eq 3

In an attempt to develop a QSAR for viral replication inhibition (C_{90}), we conducted a stepwise MLR on log$\left(K_{i}\right), C l o g P^{2}, C l o g P, C M R 22, C M R, M V / 100,(M V / 100)^{2}$, and the hydrogen-bonding property of the R-group where hydrogen bond donor, to produce eq 4 (see Table

$$
\begin{align*}
\log \left(1 / I C_{90}\right)_{2-30}=-0.863(\pm 0.135) \log \left(\mathrm{K}_{\mathrm{i}}\right)+ \\
.004(\pm 0.001) C M R^{2}-1.062(\pm 0.337) \mathrm{HBD}- \\
4.226(\pm 0.539) \tag{4}\\
\mathrm{n}=29, r=0.878, \mathrm{~s}=0.403, \mathrm{~F}_{3,25}=28.081_{(0.0001)}
\end{align*}
$$

7 and Chart 2). Equation 4 suggests that larger less hydrogen bond-donating protease inhibitors will produce a better antiviral agent. However, the quadratic term for CMR indicates that the relationship between molecular size and activity is not linear.

Predictability of Eqs $\mathbf{3}$ and 4. In an attempt to determine the utility of eqs 3 and 4 as predictors of protease inhibition and viral replication inhibition, respectively, a series of heteroaromatic carboxamides (test-1-test-8) was examined. Compounds test-1-test-8 were synthesized contemporaneously with this QSAR study. ${ }^{24}$ Using the parameters in Table 4 and eq 3 and the parameters in Table 6 and eq 4, we were able to calculate and compare the K_{i} and IC_{90} values. Within the error of the assay ($\pm 40 \%$), we found the predicted K_{i} values to be in good agreement with those observed. All predicted IC_{90} values from eq 4 were in good agreement with those found. In an attempt to extend the utility of the QSAR, we also applied the predicted K_{i} from eq 3 to eq 4 and found a good to excellent agreement between the observed antiviral activity and the predicted activity. These results buttressed our confidence in eqs 3 and 4.

Conclusion

A series of $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted cyclic urea bis(3-benzamides) was synthesized and evaluated for anti-HIV activity. The objective was to find benzamides with HIV protease activity with $\mathrm{K}_{\mathrm{i}}<0.050 \mathrm{nM}$ that translated into antiviral replication activity with $\mathrm{IC}_{90}<20 \mathrm{nM}$. The objective was met with the discovery of 18, 20-22, 24, and 29. These bis-carboxamide cyclic ureas are more potent than the 'reference compounds' DMP323,4 VX-478, ${ }^{25}$ ABT-538, ${ }^{26}$ Ro31-8959, ${ }^{27}$ and MK 639 (L-735,524) ${ }^{28}$ (also see De Clercq ${ }^{29}$). A retrospective analysis of the data showed that viral replication inhibition was
related to the ability of the compound to inhibit HIV protease (K_{i}) and the volume (CMR) and lipophilicity (ClogP) of the amide substituent (R). Increasing inhibitor lipophilicity while decreasing molecular size improved IC90. The SAR also showed that the amide substituent should contain a hydrogen bond acceptor whose position was best represented by the nitrogen in 2-pyridine. This represented one of the more important findings from this study: the identification of an additional binding site (hydrogen bond acceptor) as defined by the location of the nitrogen in the 2-pyridyl series. This inhibitor property was represented in the QSAR equations by an indicator variable, I. The finding has been extended to other heteroaromatic series with a hydrogen bond acceptor ortho to the amide nitrogen.

The ability to develop a robust traditional QSAR for protease inhibition was limited because of the lack of available substituent constants for the R-group. Because of this limitation, the predictive value of the QSAR was limited. Because of this limitation, we chose to investigate the use of semiempirical constants to develop the QSARs. Because the biological evaluation of the compounds was faster than the synthesis of the compounds, we were in need of structure-activity information to facilitate our choices for synthetic targets. The results from these studies have been instrumental in our understandings of the enzyme-inhibitor interactions and have been applied successfully to the discovery of even more potent cyclic ureas. This study has also been used to better understand the pharmacokinetics, toxicity, and drug resistance profile of the anti-HIV cyclic ureas and in the selection of other potential drug development candidates.

Experimental Section

Melting points were determined with a Thomas-Hoover melting point apparatus and are uncorrected. The NMR spectra were recorded with a Varian-300S spectrometer, IR spectra were recorded with a Perkin Elmer 1650 FTIR spectrophotometer, UV spectra were obtained with a Cary 2415 spectrophotometer, optical rotations (OR) were determined on a Perkin-Elmer 241 polarimeter, and mass spectra (MS) were obtained using the Hewlett Packard HP5988A GC-MS system. Analytical HPLC determinations were obtained with a system composed of two Varian 2510 pumps and a Varian 2550 variable wavelength detector using a $4.6 \times 250 \mathrm{~mm}$ Zorbax ODS column and $\mathrm{CH}_{3} \mathrm{CN}$-water mobile phase. Thin layer chromatography (TLC) was performed on silica gel plates.

Chemical Synthesis. Dimethyl (3a $\alpha, 4 \beta, 8 \alpha, 8 a \beta$) $-3,3^{\prime}$-[[Di-hydro-2,2-dimethyl-6-oxo-4,8-bis(phenylmethyl)-4H-1,3-dioxolo-[4,5-e][1,3]diazepine-5,7(6H ,8H)-diyl]bis(methylene)]bis[benzoate] (1b). A suspension of $\mathrm{NaH}(5.46 \mathrm{~g}, 136.4 \mathrm{mmol})$ in 250 mL of dry DMF was cooled in an ice bath and treated with the cyclic urea 1a ($10.00 \mathrm{~g}, 27.28 \mathrm{mmol}$). The mixture was stirred in the ice bath for 30 min under dry nitrogen and treated with methyl 3-(bromomethyl) benzoate ($17.18 \mathrm{~g}, 75.02$ mmol). The mixture was stirred at room temperature for 72 h and poured into a mixture of 500 g of cracked ice and saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was stirred until the ice had melted, and the resulting solid was collected by filtration, washed with water, and dissolved in 200 mL of EtOAc. The EtOAc solution was washed with water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to a thick oil. The crude product was purified by column chromatography over silica gel using EtOAc-hexane (10:90). Appropriate fractions were combined and concentrated. The desired product was collected after recrystallization from hexanes in $66 \%(11.9 \mathrm{~g})$ yield: mp 101-102 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ TMS, 300 MHz) δ 1.33 (s, 6H, $\mathrm{CH}_{3} \mathrm{CCH}_{3}$), 2.70 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $2.84(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ar}^{\prime} \mathrm{CH}$), $3.35(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$,

Table 4. Found vs Predicted K_{i} Values for $\mathbf{2 - 3 0}$ Using Eq 3

compd	R	IP or $-\epsilon_{\text {номо }}$	MV	ClogP	CMR	1	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})$	
							found	pred (eq 3)
2	H	9.416	494.20	3.850	17.035	0	0.060	0.028
3	NH_{2}	9.303	532.05	2.990	17.770	0	0.018	0.024
4	OH	9.318	521.74	3.050	17.341	0	0.020	0.021
5	OCH_{3}	9.314	544.04	4.630	18.269	0	0.080	0.098
6	CH_{3}	9.391	527.90	4.262	17.962	0	0.060	0.072
7	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	9.379	560.40	5.320	18.890	0	0.210	0.207
8	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	9.373	610.05	5.938	19.818	0	0.580	0.652
9	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	9.376	593.80	6.378	19.818	0	0.280	0.421
10	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	9.378	660.70	7.436	20.745	0	0.424	1.278
11	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	9.360	625.00	6.736	20.745	0	2.600	0.744
12	$\mathrm{CH}_{2}-\mathrm{C}_{3} \mathrm{H}_{5}$	9.379	592.30	6.208	20.470	0	0.710	0.425
13	$\mathrm{CH}_{2} \mathrm{CF}_{3}$	9.469	575.70	6.838	18.983	0	0.210	0.315
14	$\mathrm{CH}_{2} \mathrm{CN}$	9.498	557.70	2.999	18.918	0	0.063	0.079
15	Ph	9.110	623.60	7.840	22.057	0	0.370	0.187
16	4-Pyr	9.520	616.30	6.700	21.635	0	0.410	0.986
17	3-Pyr	9.394	616.70	6.700	21.635	0	0.290	0.687
18b	2-Pyr	9.233	616.30	6.700	21.635	1	0.010	0.043
19	2-(3-CH3-Pyr)	9.105	648.10	6.078	22.563	1	0.260	0.072
20	2-(4-CH3-Pyr)	9.183	649.10	7.698	22.563	1	0.030	0.047
21	2-(5-CH3-Pyr)	9.057	648.40	7.698	22.563	1	0.010	0.032
22	2-(6-CH3-Pyr)	9.106	648.70	7.698	22.563	1	0.020	0.037
23	2-(4,6-di-CH3-Pyr)	9.059	681.30	8.696	23.490	1	0.020	0.029
24	2-(5-Cl-Pyr)	9.332	639.60	8.487	22.618	1	0.010	0.031
25	2-(3,5-di-Cl-Pyr)	9.448	663.30	8.294	23.601	1	0.240	0.089
26	2-(5-Br-Pyr)	9.443	650.50	8.787	23.189	1	0.040	0.040
27	2-(4-CH3-Pym)	9.375	640.10	6.357	22.140	1	0.120	0.126
28	2-(5-CF -Pyr)	9.526	662.40	9.098	22.656	1	0.090	0.047
29	2-Prz	9.468	608.10	5.359	21.213	1	0.020	0.083
30	2-Pym	9.390	607.50	5.359	21.213	1	0.150	0.065

Table 5. Correlation Matrix for the Parameters in Eq 3

variable	IP	ClogP 2	ClogP	MV/100	I
IP	1.000	-0.221	-0.229	-0.304	-0.321
ClogP 2		1.000	0.988	0.865	0.564
ClogP			1.000	0.883	0.550
MV/100				1.000	0.667
I					1.000

4.00 (m, 4H, OCHCH), 4.54 (d, J = $13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), [6.86 ($\mathrm{m}, 4 \mathrm{H}$), $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~m}, 4 \mathrm{H}), \mathrm{Ar}]$; IR (KBr) 1724 (C=O), $1634(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e} 680(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right) ;[\alpha]^{20} \mathrm{D}+113.88^{\circ}(\mathrm{c}=0.49, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}$, MW 662.78: C, 72.49; H, 6.40; N, 4.24. Found: C, 72.42; H, 6.26; N, 4.19.
(3a $\alpha, 4 \beta, 8 \alpha, 8 a \beta$)-3,3'-[[Dihydro-2,2-dimethyl-6-oxo-4,8-bis(phenylmethyl)-4H-1,3-dioxolo[4,5-e][1,3]diazepine5,7(6H, 8 H)-diyl]bis(methylene)]bis[benzoic acid] (1c). A suspension of $60 \% \mathrm{NaH}$ in mineral oil ($4.36 \mathrm{~g}, 109.12 \mathrm{mmol}$) in 250 mL of dry DMF was treated with 1a ($10.0 \mathrm{~g}, 27.28$ mmol) and stirred at room temperature for 30 min , cooled in an ice bath, treated with methyl 3-(bromomethyl)benzoate ($18.74 \mathrm{~g}, 81.84 \mathrm{mmol}$) in 20 mL of DMF, and stirred in the ice bath for 1 h and at room temperature for 16 h . The mixture was poured into 1 kg of ice containing 100 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred until the ice had melted. The resulting precipitate was collected by decanting the aqueous phase, dissolved in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried over MgSO_{4}, filtered, and concentrated to a thick dark oil. The crude product was column chromatographed on silica gel ($100 \mathrm{~g} / 1 \mathrm{~g}$ crude product) using hexanes-EtOAc (4:1) as mobile phase. Appropriate fractions were combined and concentrated in vacuo to give the desired intermediate $\mathbf{1 b}$ as a thin amber oil in 82% (14.77 g) yield: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3} \mathrm{TMS}\right) \delta 1.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.9\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right)$, $3.15(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 3.77 ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}$, Ar'CCH), 3.84 (s, 6H, OCH 3), 3.91 (s, 2H, OCH), 4.95 (d, J = $14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), $[7.08(\mathrm{~d}, 4 \mathrm{H}), 7.3(\mathrm{~m}, 10 \mathrm{H}), 7.87(\mathrm{~s}, 2 \mathrm{H})$, 7.92 (m, 2H), Ar]; IR (neat) $1724(\mathrm{C}=0), 1632(\mathrm{C}=0) \mathrm{cm}^{-1}$; MS (NH_{3}-DCI) m/ e $663(\mathrm{M}+1)$ for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{MW} 662.30$.
The ester 1b ($12.23 \mathrm{~g}, 18.47 \mathrm{mmol}$) in 100 mL of dioxane was treated with $1 \mathrm{~N} \mathrm{NaOH}(40 \mathrm{~mL})$ and stirred at room temperature until TLC ($\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 3: 2$) indi cated that no
starting material remained. The mixture was made acidic with citric acid, and the resulting gum was collected by decanting the liquid phase. The gum was dissolved in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the desired product 1c as a white crystalline solid in 95% (12.1 g) yield: $\mathrm{mp} 218-220^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ TMS) $\delta 1.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right.$), 2.86 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.00 (d, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.21 (d, J $=14.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 3.82 (d, J $=11.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}$), 3.95 (s, 2H, OCH), 4.93 (d, J = $14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), $7.05-8.07$ ($\mathrm{m}, 18 \mathrm{H}$, Ar); IR (KBr) 1694 ($\mathrm{C}=\mathrm{O}$), $1644(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCI}\right)$ $\mathrm{m} /$ e $635(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}, \mathrm{MW}$ 634.74: C, 71.91; H, 6.03, 6.12; N, 4.41. Found: C, 71.69; H, 6.12; N, 4.44.
(3a $\alpha, 4 \beta, 8 \alpha, 8 \mathrm{a} \beta$)-3,3'-[[Dihydro-2,2-dimethyl-6-oxo-4,8-bis(phenylmethyl)-4H-1,3-dioxolo[4,5-e][1,3]diazepine-5,7(6H,8H)-diyl]bis(methylene)]bis[benzonitrile] (1h). A suspension of $\mathrm{NaH}(0.53 \mathrm{~g}, 22.2 \mathrm{mmol})$ in 30 mL of dry THF was treated in small portions with $\mathbf{1 a}(3.7 \mathrm{~g}, 10.1 \mathrm{mmol})$. The mixture was stirred at room temperature for 30 min and treated with α-bromo-m-tolunitrile ($4.3 \mathrm{~g}, 21.9 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h under dry nitrogen and inspected by MS that showed $m /$ e $482(M+1)$ for monosubstituted cyclic urea and $\mathrm{m} /$ e $597(\mathrm{M}+1)$ for disubstituted cyclic urea. An additional 1 equiv of NaH was added, and the mixture was stirred for 30 min , treated with an additional 1 equiv of α-bromo-m-tolunitrile, and refluxed for 16 h . The mixture was cooled to room temperature and poured onto 250 g of cracked ice. The mixture was stirred until the ice had melted and extracted with $2 \times 100 \mathrm{~mL}$ of EtOAc. The EtOAc solution was washed with water and brine, dried over MgSO_{4}, filtered, and inspected by TLC $\left(\mathrm{CHCl}_{3}-\mathrm{EtOAc}\right.$, 3:2). The mixture contained two components ($\mathrm{R}_{\mathrm{f}}=0.75$ and 0.65), neither of which was the starting cyclic urea ($R_{f}=0.55$) nor starting α-bromo-m-tolunitrile. The mixture was concentrated to a solid which was recrystallized from 50 mL of 2-propanol to give the desired product in 35% (2.10 g) yield: mp 155-156 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.65\left(\mathrm{CHCl}_{3}-\mathrm{EtOAc}, 3: 2\right.$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{TMS}\right) \delta 1.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75$ and $3.0(2 \mathrm{~m}, 4$, PhCH_{2}) $3.26\left(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.77(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NCH}$), 3.96 (s, 2H, OCH), 4.73 (d, J $=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), [6.97(m, 4H), $7.26(\mathrm{~m}, 6 \mathrm{H}), 7.4(\mathrm{~m}, 6 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H})$, Ar]; IR (Nujol) 2228 (CN), $1638(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 597$

Table 6. Found vs Predicted IC I_{90} Using Eq 4, Predicted IC C_{90} Using Eq 4, and Predicted K_{i} from Eq 3

compd	R	found $\mathrm{IC}_{90}(\mathrm{nM}$,$\text { SD }< \pm 36 \%)$	$\log \mathrm{K}_{\mathrm{i}}$	ClogP	CMR	HBD	HBA	IC90 (nM)		pred IC_{90} (eq 4) and pred $\mathrm{K}_{\mathrm{i}}(\mathrm{eq} 3)$
								SD < $\times 36 \%$	pred (eq 4)	
2	H	708.6	-1.409	3.85	17.04	1	0	708.6	1065.1	728.1
3	NH_{2}	883.6	-1.745	2.99	17.77	1	1	883.6	442.1	521.1
4	OH	448.2	-1.699	3.05	17.34	1	1	448.2	548.6	523.9
5	OCH_{3}	214.5	-1.347	4.63	18.27	0	1	214.5	72.8	130.0
6	CH_{3}	80.5	-1.180	4.26	17.96	0	0	80.5	111.1	109.0
7	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	138.7	-0.678	5.32	18.89	0	0	138.7	227.2	204.2
8	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	265.9	-0.237	5.94	19.82	0	0	265.9	404.8	408.7
9	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	259.0	-0.445	6.38	19.82	0	0	259.0	268.0	280.2
10	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	255.3	-0.373	7.44	20.75	0	0	255.3	226.5	534.6
11	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	717.1	0.380	6.74	20.75	0	0	717.1	1011.2	335.2
12	$\mathrm{CH}_{2}-\mathrm{C}_{3} \mathrm{H}_{5}$	485.1	-0.130	6.21	20.47	0	0	485.1	402.9	227.1
13	$\mathrm{CH}_{2} \mathrm{CFF}_{3}$	92.5	-0.678	6.84	18.98	0	0	92.5	220.7	284.8
14	$\mathrm{CH}_{2} \mathrm{CN}$	596.3	-1.201	3.00	18.92	0	1	596.3	79.7	87.8
15	Ph	510.4	-0.367	7.84	22.06	0	1	510.4	144.0	64.1
16	4-Pyr	93.7	-0.387	6.70	21.64	0	1	93.7	161.0	312.3
17a	$3-\mathrm{Pyr}$	123.2	-0.538	6.70	21.64	0	1	123.2	119.4	228.9
18	2-Pyr	2.8	-1.367	6.70	21.64	0	1	2.8	23.0	21.1
19	2-(3-Me-Pyr)	50.3	-0.585	6.08	22.56	0	1	50.3	77.3	23.4
20	2-(4-Me-Pyr)	7.7	-1.569	7.70	22.56	0	1	7.7	11.0	16.3
21	2-(5-Me-Pyr)	3.1	-1.959	7.70	22.56	0	1	3.1	5.0	11.7
22	2-(6-Me-Pyr)	3.2	-1.699	7.70	22.56	0	1	3.2	8.5	13.3
23	2-(4,6-di-Me-Pyr)	6.6	-1.796	8.70	23.49	0	1	6.6	4.9	7.5
24	2-(5-Cl-Pyr)	14.7	-1.921	8.49	22.62	0	1	14.7	5.3	10.9
25	2-(3,5-di-Cl-Pyr)	43.0	-0.611	8.29	23.60	0	1	43.0	49.4	18.8
26	2-(5-Br-Pyr)	28.2	-1.456	8.79	23.19	0	1	28.2	10.8	11.0
27	2-(4-MePym)	124.4	-0.939	6.36	22.14	0	1	124.4	44.7	44.2
28	2-(5-CF3-Pyr)	63.4	-1.071	9.10	22.66	0	1	63.4	28.5	15.6
29	2-Prz	3.5	-1.745	5.36	21.21	0	1	3.5	12.6	43.1
30	2-Pym	220.3	-0.818	5.36	21.21	0	1	220.3	79.4	34.9

Table 7. Cross-Correlation Matrix for the Parameter in Eq 4

variable	$\log \mathrm{K}_{\mathrm{i}}$	CMR^{2}	HBD
$\log \mathrm{K}_{\mathrm{i}}$	1.000	-0.047	-0.330
CMR 2		1.000	-0.584
HBD			1.000

Chart 2. Found vs Predicted Viral Replication
Inhibition Using Eq 4

$(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+124.56^{\circ}(\mathrm{c}=0.228, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, MW 614.75: C, 74.24; H, 6.23; N, 9.11. Found: C, 74.36; H, 6.47; N, 8.82.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[benzamide] (2). A solution of $\mathbf{1 h}(0.33 \mathrm{~g}$, $0.56 \mathrm{mmol})$ in EtOH (10 mL) and $\mathrm{KOH}(0.325 \mathrm{~g}, 5.6 \mathrm{mmol}$) was stirred at room temperature in a water bath for 30 min and treated with 5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The mixture was stirred at room temperature for 24 h and inspected by TLC ($\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}, 9: 1)\left(\mathrm{R}_{\mathrm{f}} \mathrm{R}-\mathrm{CN}=0.85\right.$ and $\left.\mathrm{R}_{\mathrm{f}} \mathrm{R}-\mathrm{CONH}_{2}=0.33\right)$ and IR and found to contain no starting nitrile at $2228 \mathrm{~cm}^{-1}$. The mixture was concentrated in vacuo, and the residue was triturated with 100 mL of 10% citric acid. The resulting white solid was collected by filtration, washed with additional water, and dried. The "benzamide-acetonide" was dissolved in
acetonitrile (10 mL), treated with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, and stirred at $50^{\circ} \mathrm{C}$ until no starting acetonide remained as evidenced by $\mathrm{TLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. The mixture was concentrated in vacuo, and the residue was triturated with water at $70^{\circ} \mathrm{C}$ and placed in the cold for 3 h . The resulting white crystals were collected by filtration, washed with cold water, and dried in vacuo to give the desired product in $92 \%(0.305 \mathrm{~g})$ yield: mp $143-145^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$ TMS) $\delta 2.75$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.03 (m, 4H, Ar'CH, NCH), 3.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}$), $3.51(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCCH}), 4.65(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}$, NCH), 4.6 (br s, 2H, OH), [6.94 (d, 4H), 7.23 (m, 10H), 7.40 (dd, 2H), 7.7 (m, 2H, Ar)], 7.76 and 7.95 ($2 \mathrm{~s}, \mathrm{CONH}_{2}$); IR (KBr) 3348 (OH), $1662(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis ($\mathrm{c}=0.016$ $\mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}$) $\lambda_{\text {max }} 274$ (1852), 222 (38 673) nm; MS $\left(\mathrm{NH}_{3}\right.$ $\mathrm{DCl}) \mathrm{m} / \mathrm{e} 610\left(\mathrm{M}+\mathrm{NH}_{4}\right) ;[\alpha]^{20} \mathrm{D}+121.00^{\circ}(\mathrm{c}=0.100, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 592.70: C, 70.93 ; $\mathrm{H}, 6.12$; N, 9.45. Found: C, 70.84; H, 5.91; N, 9.23.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[benzoic acid] Dihydrazide (3). A solution of $\mathbf{1 b}(0.500 \mathrm{~g}, 0.75 \mathrm{mmol})$ in 25 mL of MeOH was treated with anhydrous hydrazine ($0.5 \mathrm{~mL}, 15.3 \mathrm{mmol}$) and stirred at room temperature for 16 h . The mixture was diluted to the cloud point with water, allowed to stand for 2 h , and further diluted to 250 mL with water. The resulting white crystals were collected by filtration, washed with water, and dried in vacuo to give the intermediate hydrazide-acetonide in 99\% $(0.493 \mathrm{~g})$ yield: $\mathrm{mp} 76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$ TMS) $\delta 1.33$ (d, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}$), 2.74 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.85 (d, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.32 (d, 2H, NCH), $3.81\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 4.0(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CHCHCHCH}), 4.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH})$, $[6.88(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 6 \mathrm{H})$, $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.5(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 3 \mathrm{H})$, Ar], 9.75 (s, 2H,NH); MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 663(\mathrm{M}+1), 685\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.

A solution of the acetonide $(0.450 \mathrm{~g}, 0.679 \mathrm{mmol})$ in 10 mL of acetonitrile was treated with 10 mL of 1 N HCl and stirred at room temperature until no acetonide was evidenced by TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1$). Fine white needles formed (HCl salt?). The mixture was treated with 100 mL of $5 \% \mathrm{NaHCO}_{3}$, stirred for 1 h , and filtered to collect the white solid. The solid was washed with water and dried in vacuo to give the desired product in 92% (0.401 g) yield from the acetonide or 91% from lb: mp 161-163 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d_{6}$ TMS) δ 2.72 (dd, 2H, Ar'CH), 2.97 (d, 2H, Ar'CH), 3.07 (d, J = 13.9

Table 8. Found vs Predicted Activity Using Eqs 3 and 4 for a Set of Compounds (test-1-test-8) Not Used To Generate the Regression Equations

cmpd	R	IP	$C \log \mathrm{P}$	CMR	MV	I	HBD	$\begin{gathered} \text { fnd } \mathrm{K}_{\mathrm{i}} \\ \text { sd }< \pm 40 \% \end{gathered}$	pred K_{i} eq 3	$\begin{gathered} \text { fnd } \mathrm{IC}_{90} \\ \text { sd }< \pm 36 \% \end{gathered}$	$\begin{gathered} \text { pred } \mathrm{IC}_{90} \\ \text { eq } 4 \end{gathered}$
Test-1		9.271	5.590	20.990	611.60	1	0	0.064	0.046	59.6	40.7
Test-2		9.666	7.002	21.852	637.70	1	0	0.180	0.204	74.8	73.2
Test-3		9.557	4.673	20.831	590.80	1	0	0.110	0.056	51.3	68.7
Test-4		9.475	6.244	21.253	599.00	1	0	0.027	0.061	1.7	17.6
Test-5		9.346	6.782	22.181	632.00	1	0	0.025	0.077	4.1	11.8
Test-6		9.351	6.782	22.181	631.50	1	0	0.014	0.076	17.8	7.2
Test-7		9.003	5.276	20.494	585.70	1	1	0.014	0.011	45.5	150.2
Test-8		8.652	8.464	23.870	664.70	1	1	0.024	0.007	3.9	69.0

$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 3.49 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}$), 3.82 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}$), $4.62(\mathrm{~d}, 14.2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.92(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H})$, $7.44(\mathrm{~m}, 4 \mathrm{H}), 7.6(\mathrm{~m}, 1 \mathrm{H}), 7.8(\mathrm{~m}, 3 \mathrm{H}), \mathrm{Ar}], 7.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3440(\mathrm{OH}), 1724(\mathrm{C}=0), 1642(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}^{\prime}(\mathrm{ESI})$ $\mathrm{m} / \mathrm{e} 623(\mathrm{M}+1) ;[\alpha]^{20}{ }_{\mathrm{D}}+106.73^{\circ}(\mathrm{c}=0.208, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{5}$, MW 622.72: C, 67.51; $\mathrm{H}, 6.15 ; \mathrm{N}, 13.50$. Found: C, 67.83; H, 6.31; N, 13.82.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N-hydroxybenzamide] (4). A solution of 1c ($0.635 \mathrm{~g}, 1.000 \mathrm{mmol}$) in 20 mL of THF was treated with (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP, Castro's reagent) ($1.33 \mathrm{~g}, 3.0 \mathrm{mmol}$), stirred for 15 min , and treated with hydroxylamine hydrochloride ($0.5 \mathrm{~g}, 7.2 \mathrm{mmol}$) and triethylamine ($0.25 \mathrm{~g}, 2.5 \mathrm{mmol}$). The reaction mixture was stirred for 48 h and concentrated in vacuo. The residue was partitioned between 100 mL of water and 100 mL of EtOAc. The organic phase was washed with $3 \times 100 \mathrm{~mL}$ of $5 \% \mathrm{NaHCO}_{3}$, water, and brine, dried over MgSO_{4}, filtered, concentrated to a foam ($0.518 \mathrm{~g}, 78 \%$ yield), and found to be homogenous by TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 4: 1$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6} TMS) $\delta 1.27$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}$), 2.7-2.9 (m, 4H, Ar'CH 2), 3.22 (d, J $=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 4.0 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}$), $4.56(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 6.9-$ 7.7 (m, 18H, Ar), 9.04 (d, 4H, CONH), 11.24 (s, 2H, NOH); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ film) $3240(\mathrm{OH}$ and NH$), 1636(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS $\left(\mathrm{NH}_{3}-\right.$ DCI) m/e $665(\mathrm{M}+1)$.

The acetonide ($0.450 \mathrm{~g}, 0.68 \mathrm{mmol}$) was dissolved in 10 mL of MeOH and treated with 10 mL of 1 N HCl . The mixture was stirred at room temperature until no acetonide remained as evidenced by TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 4: 1$). The organic solvent was removed in vacuo, and the resulting solid was collected by filtration and dried in vacuo to give the desired product in $95 \%(0.404 \mathrm{~g})$ yield from the acetonide or 74% from 1c: mp $139-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ TMS) $\delta 2.77$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.97 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}$), 3.49 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHCH}-$ CHCH), $4.64\left(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right.$), $5.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, [6.9 (m, 4H), 7.24 (m, 8H), 7.40 (dd, 2H), 7.64 (m, 3H), 7.80 (m, 1H), Ar], 9.03 (s, 2H, CONH), $11.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NOH}$); IR (KBr) 3242 (broad), 1644 ($\mathrm{C}=\mathrm{O}$) cm^{-1}; MS $\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 625$ ($\mathrm{M}+$ $1) ;[\alpha]^{20} \mathrm{D}+109.13^{\circ}(\mathrm{c}=0.21, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, MW 633.71: C, 66.34; H, 5.89: $\mathrm{N}, 8.84$. Found: C, 66.60; H, 5.96; N, 8.90.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(methyloxy)benzamide] (5). By substituting methoxylamine hydrochloride in the procedure used to synthesize 4, the desired product was obtained in 93\% (0.606 g) yield: mp 155° dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6} TMS) δ
2.7 (m, 2H, Ar'CH), 2.96 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}$), 3.5 ($\mathrm{m}, 4 \mathrm{H}$, $\mathrm{CHCHCHCH}), 3.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.64(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}), 5.15$ (br s, 2H, OH), [6.95 (d, 4H), $7.24(\mathrm{~m}, 6 \mathrm{H}), 7.32$ (d, $2 \mathrm{H}), 7.42$ (dd, 2H), $7.61(\mathrm{~m}, 4 \mathrm{H}), \operatorname{Ar}], 11.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3406(\mathrm{OH}), 3218(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{O}), 1628(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis ($\mathrm{c}=0.017 \mathrm{mg} / \mathrm{mL}$, MeOH) $\lambda_{\text {max }} 275$ (2342) nm; MS $\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 653(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+73.05^{\circ}(\mathrm{c}=0.204, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{7}, \mathrm{MW}$ 652.75: C, 68.08; $\mathrm{H}, 6.18$; $\mathrm{N}, 8.58$. Found: C, $68.42 ; \mathrm{H}, 6.17 ; \mathrm{N}, 8.69$.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N-methylbenzamide] (6). By substituting methylamine hydrochloride in the procedure for 4 , the desired product was obtained in $99 \%\left(0.612 \mathrm{~g}\right.$) yield: $\mathrm{mp} 163-165{ }^{\circ} \mathrm{C}$; ${ }^{1}{ }^{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$ TMS) $\delta 2.75$ (m, $8 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$, $\left.\mathrm{NCH}_{3}\right), 2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.49(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHCHCH})$, $4.66(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{OH}),[6.93(\mathrm{~d}$, 4 H), 7.23 (m, 8H), 7.40 (dd, 2H), 7.7 (m, 4H), Ar], 8.41 (m, 2H, NH); IR (KBr) $3352(\mathrm{OH}, \mathrm{NH}), 1640(\mathrm{C}=0) \mathrm{cm}^{-1}$; UV-vis (C $=0.014 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 275$ (2017) nm; MS ($\mathrm{NH}_{3}-\mathrm{DCl}$) $\mathrm{m} / \mathrm{e} 621(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+105.19^{\circ}(\mathrm{c}=0.212, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 620.76: C, 71.59; H, 6.50; N, 9.03; Found: C, 71.27; H, 6.64; N, 8.81.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'[[TTetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(1-methylethyl)benzamide] (8). A mixture of $1 \mathrm{c}(0.500 \mathrm{~g}, 0.787 \mathrm{mmol})$, HOBt ($0.212 \mathrm{~g}, 1.57 \mathrm{mmol}$), and isopropylamine ($0.139 \mathrm{~g}, 2.36 \mathrm{mmol}$) in EtOAc (20 mL) was stirred at room temperature and treated with DCC (0.357 $\mathrm{g}, 1.73 \mathrm{mmol}$). The mixture was purged with dry nitrogen, capped, and stirred at room temperature for 48 h . The mixture was treated with water (50 mL), stirred an additional 1 h , and filtered to remove the DCU. The mixture was filtered, and the organic layer was separated, washed with water, 5% NaHCO_{3}, water, and brine, dried over MgSO_{4}, stored at -20 ${ }^{\circ} \mathrm{C}$ for 4 h , and filtered to remove additional DCU. The filtrate was concentrated to a foam of constant weight (0.560 g): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6} TMS) $\delta 1.12$ ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.8\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right), 3.23$ $(d, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.96\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right.$), $4.01(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 4.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCHC}), 4.61(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NCH}),[6.92(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~m}$, 4 H), Ar], $8.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e} 734\left(\mathrm{M}+\mathrm{NH}_{4}\right)$ for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 716.92.

The above intermediate acetonide was dissol ved acetonitrile $(10 \mathrm{~mL})$, treated with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, stirred for 16 h , diluted with 50 mL of water, and stirred for 1 h . The resulting white sol id was collected by filtration, washed with water, and dried in vacuo to give the desired product in 77% (0.428 g) yield from

1c: mp 131-135 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} TMS) δ $1.11\left(2 \mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.77$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $2.96(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}$), $3.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 3.51(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 2 \mathrm{H}$, OCCH), $4.70(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 5.14 (broad s, 2 H , OH), [6.98 (d, 4H), 7.24 (m, 8H), 7.40 (dd, 2H), 7.69 (s, 2H), 7.73 (d, 2H), Ar], $8.20(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}$); IR (KBr) 3346 (OH, NH), $1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis ($c=0.0290 \mathrm{mg} / \mathrm{mL}$, $\mathrm{MeOH}) \lambda_{\max } 267(35663), 218(2264) \mathrm{nm} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e}$ $694\left(\mathrm{M}+\mathrm{NH}_{4}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+90.23^{\circ}(\mathrm{c}=0.174, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 721.90$: C, 68.23 ; $\mathrm{H}, 7.40$; N, 7.76. Found: C, 68.35; H, 7.08; N, 7.63.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -ethylbenzamide] (7). By substituting ethylamine hydrochloride in the method for 8, the desired product was obtained in 92% yield: $\mathrm{mp} 160-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 1.09$ (t, 6H, CH_{3}), $2.76(\mathrm{~m}, 2 \mathrm{H}$, Ar'CH), $2.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.49$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}$) $4.69(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 6.9-$ 7.9 (m, 18H, Ar), 8.47 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NH}$); IR (KBr) $3348(\mathrm{OH}, \mathrm{NH})$, $1642(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis $(\mathrm{c}=0.0180 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max }$ 275 (1968) nm; MS (NH_{3}-DCI) m/e $649(\mathrm{M}+1)$; $[\alpha]^{20} \mathrm{D}$ $+100.47^{\circ}(\mathrm{c}=0.214, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{MW}$ 648.81: C, $72.20 ; H, 6.84 ; \mathrm{N}, 8.64$. Found: C, 72.33 ; H, 6.80 ; N, 8.53.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[TTetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-propylbenzamide] (9). By substituting propylamine hydrochloride in the method for 8, the desired product was obtained in 90\% yield: mp 166-168*; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} \mathrm{TMS}$) $\delta 0.85\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), $2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.18$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.47(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}), 4.48(\mathrm{~d}, \mathrm{~J}=14.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NCH}), 6.9-7.9(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 8.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3348(\mathrm{OH}, \mathrm{NH}), 1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis $(\mathrm{c}=0.0190$ $\mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 275$ (2230) nm; MS (NH_{3}-DCI) m/ e 677 $(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+88.61^{\circ}(\mathrm{c}=0.202, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 676.86: C, 72.76; H, 7.15; N, 8.28. Found: C, 72.49; H, 7.16; N, 8.29.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[TTetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-butylbenzamide] (10). By substituting n-butylamine in the procedure used to synthesize 4 , the desired product was obtained in 98% yield from 1c: $\mathrm{mp} 132-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}^{2}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 0.84\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$) , $1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.95 (m, $\left.4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.45(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH})$, $3.50\left(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right.$), $4.68(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}), 5.12(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.96(\mathrm{~d}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 8 \mathrm{H}), 7.40(\mathrm{dd}$, 2 H), 7.68 (s, 2H), $7.70(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}], 8.40(\mathrm{t}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) 3340 (OH, NH), $1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS (NH_{3}-DCI) m/e 705 (M $+1) ;[\alpha]^{20} \mathrm{D}+80.88^{\circ}(\mathrm{c}=0.0204, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 704.92: C, 73.27; H, 7.45; N, 7.96. Found: C, 73.20; H, 7.66; N, 8.11.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(1,1-dimethylethyl)benzamide] (11). By substituting tert-butylamine in the procedure used to synthesize 4, the desired product was obtained in 97% yield from 1c: mp 131-133 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6} TMS) $\delta 1.32$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{t} \mathrm{Bu}$), 2.79 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.95 (m, 4H, Ar'CH, NCH), 3.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}$), $3.50\left(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right.$), 4.73 (d, J = $14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, [7.03 (d, $4 \mathrm{H}), 7.26(\mathrm{~m}, 8 \mathrm{H}), 7.35(\mathrm{dd}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, 2 \mathrm{H})$, Ar], 7.71 (s, 2H, NH); IR (KBr) 3384 (OH, NH), 1646 ($\mathrm{C}=\mathrm{O}$) $\mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 705(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+74.50^{\circ}(\mathrm{c}=0.20$, $\mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{MW}$ 704.92: C, 73.27; $\mathrm{H}, 7.44 ; \mathrm{N}, 7.96,7.84$. Found: $\mathrm{C}, 73.23 ; \mathrm{H}, 7.08 ; \mathrm{N}, 7.84$.

Alternatively, by substituting tert-butylamine in the modification of the Weinreb method, the desired product was obtained in an overall yield of $86 \%(0.43 \mathrm{~g})$ from $\mathbf{1 b}$: mp 133 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ TMS) $\delta 1.32$ ($\mathrm{s}, 18 \mathrm{H}$, ${ }^{\mathrm{t}} \mathrm{Bu}$), 2.80 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.96 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}$), 3.40 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}$), $3.50\left(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right.$), 4.68 ($\mathrm{d}, \mathrm{J}=$ $14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 5.11 (s, 2H, OH), [7.03 (d, 4H), 7.26 (m, $8 \mathrm{H}), 7.38$ (dd, 2H), 7.62 (s, 2H), 7.67 (d, 2H), Ar], 7.71 (s, 2H,

NH) ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ TMS) $\delta 1.40$ ($\mathrm{s}, 18 \mathrm{H},{ }^{\mathrm{t} B u}$), $2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.57(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}$), 3.64 (s, 2H, OCH), 3.75 (br s, 2, OH), 4.85 ($\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), $5.98(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}),[7.21(\mathrm{~d}$, $4 \mathrm{H}), 7.3$ (m, 10H), 7.43 (s, 2H), 7.54 (dd, 2H), Ar, Ar']; IR (KBr) $3420(\mathrm{OH}, \mathrm{NH}), 1646(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis $(\mathrm{c}=0.019 \mathrm{mg} / \mathrm{mL}$, $\mathrm{MeOH})$ no clearly defined $\lambda_{\max } ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 703(\mathrm{M}+$ 1), $720\left(\mathrm{M}+\mathrm{NH}_{4}\right) ;[\alpha]^{20} \mathrm{D}+73.33^{\circ}(\mathrm{c}=0.15, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 704.92: C, 73.27; H, 7.44; N, 7.95. Found: C, 72.88; H, 7.46; N, 7.90.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(cyclopropylmethyl)benzamide] (12). To a solution of $\mathbf{1 c}(0.54 \mathrm{~g}, 0.85 \mathrm{mmol})$ in dry THF (50 mL) was added N -methylmorpholine ($0.51 \mathrm{~g}, 5.0 \mathrm{mmol}$) and isobutyl chloroformate ($0.23 \mathrm{~g}, 1.68 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h , cooled in an ice bath, and treated with cydopropylmethylamine hydrochloride ($0.42 \mathrm{~g}, 3.9 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 6 h , concentrated in vacuo, triturated with water, and extracted with EtOAc. The EtOAc solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The crude product was column chromatographed on silica gel using hexane-EtOAc (4:1). Appropriate fractions were combined and concentrated to give the intermediate as a foam: MS (NH_{3}-DCI) m/e 758 ($\mathrm{M}+$ NH_{4}). The 'amide-acetonide' ($0.17 \mathrm{~g}, 0.230 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$, treated with $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}$, 0.94 mmol), stirred at room temperature for 4 h , and poured into water (10 mL). The mixture was extracted with EtOAc, and the EtOAc extract was washed with water, $5 \% \mathrm{NaHCO}_{3}$, water, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the product as a white solid in 27% (0.160 g) yield: mp $116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ TMS) $\delta 0.18$ (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.78$ (dd, 2H, $\mathrm{Ar}^{\prime} \mathrm{CH}$), 2.96 (d, J = $14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 3.11 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.33 (d, 4H, NCH 2), $3.5(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.66(\mathrm{~d}, \mathrm{~J}=14.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.96(\mathrm{~d}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 8 \mathrm{H})$, 7.41 (dd, 2H), 7.69 (s, 2H), 7.73 (d, 2H), Ar], 8.82 (dd, 2H, NH); $\mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right)$ m/e calcd for $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{5}(\mathrm{M}+1)$ 701.368 959, found 701.370 296, $718\left(\mathrm{M}+\mathrm{NH}_{4}\right)$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{MW} 700.89$: C, 73.69; H, 6.90; $\mathrm{N}, 7.99$. Found: C, 73.32; H, 6.91; N, 8.02.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(2,2,2-trifluoroethyl)benzamide] (13). A mixture of 1c ($0.635 \mathrm{~g}, 1.00 \mathrm{mmol}$), triethylamine (0.22 g , 2.2 mmol), and 2,2,2-trifluoroethylamine hydrochloride (0.30 $\mathrm{g}, 2.2 \mathrm{mmol}$) in 25 mL of DMF was stirred for 10 min and treated with 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (water soluble carbodiimide, WSC). The mixture was stirred at room temperature for 16 h and diluted with 150 mL of water. The resulting gum was col lected by decanting the aqueous phase, dissolved in 100 mL of EtOAc, washed with water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give the crude bis-amide acetonide. The crude acetonide was di ssolved in 10 mL of CHCl_{3}, treated with 40 mL of $1 \mathrm{~N} \mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$, and stirred at room temperature until $\mathrm{TLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 8: 2\right)$ indicated no starting acetonide. The mixture was concentrated in vacuo and purified by preparative TLC on silica gel plates using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (8:2) as mobile phase. The desired product was isolated in $15 \%(0.114 \mathrm{~g})$ yield: $\mathrm{mp} 116-120^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.66\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 8: 2\right) ;{ }^{1} \mathrm{H} N M R$ ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 2.74$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.98 (dd, $4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CHCH}$), $3.51(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 3.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}), 4.09$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CF}_{3}$) $, 4.63(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.20(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OH}$), [6.91 (m, 4H), $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (dd, $2 \mathrm{H}), 7.72$ (s, 2H), 7.78 (d, 2H), Ar], $9.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta-70.979$; MS $\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 774$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)$, $757(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}$, MW 756.75: C, 61.90; H, 5.06; N, 7.40. Found: C, 61.83; H, 5.11; N, 7.44.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'[[TTetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(cyanomethyl)benzamide] (14). A soIution of $\mathbf{1 c}(1.27 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with oxalyl chloride ($0.76 \mathrm{~g}, 3.0 \mathrm{mmol}$) and 1 drop of DMF.

The mixture was stirred for 30 min and treated with aminoacetonitrile hydrochloride ($0.556 \mathrm{~g}, 6.0 \mathrm{mmol}$). The mixture was stirred for an additional 10 min and treated with diisopropylethylamine ($1.56 \mathrm{~g}, 12.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 16 h and concentrated in vacuo. The residue was diluted with 100 mL of water, triturated, and filtered to collect the tan solid. The solid was washed with water, dried, and chromatographed on silica gel using EtOAc- $\mathrm{CHCl}_{3}(3: 2)$ as mobile phase. Appropriate fractions were combined and concentrated to an off-white solid of constant weight (0.780 g): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$ TMS) $\delta 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.70\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 2.83(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.31(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 4.0(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CHCHCHCH}), 4.31\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 4.52(\mathrm{~d}, \mathrm{~J}=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$), 6.8-7.8 (m, 18H, Ar), 9.22 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{NH}$).

The above acetonide was dissolved in 10 mL of acetonitrile, treated with 10 mL of 1 N HCl , and stirred at room temperature for 4 h . The mixture was diluted with 100 mL of water and triturated. The resulting solid was collected by filtration, washed with additional water, and dried in vacuo to give the desired product in $41 \%(0.544 \mathrm{~g})$ yield from 1c: mp $141-143{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$ TMS) $\delta 2.72$ (dd, 2H, Ar'CH), 2.96 (m, 2H, Ar'CH), 3.04 (d, J $=14.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NCH}), 3.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}), 4.61(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NCH}), 5.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.89(\mathrm{~d}, 4 \mathrm{H}), 7.21(\mathrm{~m}, 6 \mathrm{H}), 7.39$ (d, 2H), 7.46 (dd, 2H), 7.72 (m, 4H), Ar], 9.21 (t, 2H, NH); IR (KBr) $3388(\mathrm{OH}, \mathrm{NH}), 1654(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e}$ $671(M+1) ;[\alpha]^{20}{ }_{D}+98.72^{\circ}(c=0.16, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW}$ 697.80: C, 67.13; H, 5.92; N , 12.04. Found: C, 67.23; H, 5.59; N, 12.16.
(4 $\alpha, 5 \alpha, 6 \beta, 7 \beta)-3,3-[[T e t r a h y d r o-5,6-d i h y d r o x y-2-0 \times 0-4,7-$ bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[phenylbenzamide] (15). The compound was synthesized using a modification of the Weinreb method. ${ }^{7}$ A solution of aniline ($0.93 \mathrm{~g}, 9.98 \mathrm{mmol}$) in dichloroethane (5 mL) was treated with 2 M trimethylaluminum (TMA) $(5.0 \mathrm{~mL}$, $10 \mathrm{mmol})$, stirred at room temperature for 10 min , and added to a solution of $\mathbf{1 b}(0.500 \mathrm{~g}, 0.754 \mathrm{mmol})$ in dichloroethane (15 mL). The mixture was refluxed under dry nitrogen for 25 h and inspected by TLC $\left(\mathrm{CHCl}_{3}-E t O A c, 3: 2\right)$ which showed no 1b. Mass spectral analysis showed $\mathrm{m} / \mathrm{e} 802\left(\mathrm{M}+\mathrm{NH}_{4}\right)$. The mixture was diluted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50 mL of water, stirred for 1 h , and filtered through a bed of Celite. The filtrate was washed with water $(50 \mathrm{~mL}), 5 \% \mathrm{NaHCO}_{3}(2 \times 25$ $\mathrm{mL})$, water, and brine, dried over MgSO_{4}, filtered, and concentrated to a brown solid (0.300 g) whose mass spec. showed 745 ($M+1$) and NMR (DMSO-d 6 TMS) showed no acetonide group. (Note: Most preps do not show the loss of the acetonide protecting group.) The crude product was triturated with 25 mL of 1 N HCl for 1 h , collected by filtration, washed with water, dried in vacuo, and recrystallized from warm acetonitrile to give the desired product in 43% (0.2401 g) yield as fine slightly yellow crystals: mp $156-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d 6 TMS) $\delta 2.79$ (dd, 2H, Ar'CH), 3.00 (m, 4H, Ar'CH, NCH), 3.51 (s, 2H, OCH), 3.56 (d, J $=12.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right), 4.73(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.17(\mathrm{~s}, 2 \mathrm{H}$, OH), [6.98 (d, 4H), 7.09 (dd, 2H), 7.2-7.45 (m, 12H), 7.50 (dd, $2 \mathrm{H}), 7.77(\mathrm{~m}, 6 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}], 10.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}$ $\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 762\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.

Alternatively, by substituting aniline in the method for $\mathbf{8}$, the desired amide was obtained in $94 \%(0.550 \mathrm{~g})$ yield as a pure amorphous white solid. A small amount was recrystallized from warm acetonitrile to give white opaque plates: mp $157-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$ TMS) $\delta 2.79$ (dd, $\left.2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.5(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH})$, $4.73(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, [6.98(d, 4H), 7.09 (dd, 2H), 7.15-7.40 (m, 12H), 7.50 (dd, 2H), 7.8 (m, $6 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}], 10.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3420(\mathrm{OH}$, $\mathrm{NH}), 1660(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} /$ e 762 $\left(\mathrm{M}+\mathrm{NH}_{4}\right) ;[\alpha]^{20}+85.83^{\circ}(\mathrm{c}=0.12, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 753.90$: C, 74.88; H, 6.02; $\mathrm{N}, 7.43$. Found: C, 75.24; H, 5.91; N, 7.41.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-4-pyridinylbenzamide] (16). By substituting 4-aminopyridine in the Weinreb method for $\mathbf{1 5}$, the
desired product was obtained in $23 \%(0.348 \mathrm{~g})$ yield from 1c: mp $153-154{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6 TMS) $\delta 2.76$ (dd, 2H, Ar'CH), 2.98 (d, J $=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.06 (d, J $\left.=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHAr}{ }^{\prime}\right), 3.51(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 3.56(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NCHC}), 4.71\left(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHAr}^{\prime}\right), 5.17(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OH}),[6.97(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}), 7.52(\mathrm{dd}$, $\left.2 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}, \mathrm{Ar}^{\prime \prime}\right],[7.77(\mathrm{~d}, 4 \mathrm{H}), 8.47(\mathrm{~d}$, 4H), 4-Pyr], 10.59 (s, 2H, NH); IR (KBr) 3414 (broad OH), 1686 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 728\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]^{20}{ }_{\mathrm{D}} 75.00^{\circ}$ ($\mathrm{C}=0.300, \mathrm{MeOH}$). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{5}, \mathrm{MW} 746.87$: C, 72.37; H, 5.67; N, 11.25. Found: C, 72.33; H, 5.67; N, 11.19.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0xo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-3-pyridinylbenzamide] (17). By substituting 3-aminopyridine in the Weinreb method for 15, the desired product was obtained in $50 \%(0.585 \mathrm{~g})$ yield from the acid: mp 163-165 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} TMS) $\delta 2.78$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $2.99\left(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right.$), 3.05 $(d, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.45-3.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.72$ $(\mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.97(\mathrm{~d}, 4 \mathrm{H})$, $7.23(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{dd}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}$, $2 \mathrm{H}), 8.18(\mathrm{~d}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.91(\mathrm{~s}, 2 \mathrm{H}), \mathrm{Ar}], 10.47(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}) ;$ IR (KBr) $3320(\mathrm{OH}), 1654(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS $\left(\mathrm{NH}_{3}-\mathrm{DCI}\right)$ $\mathrm{m} / \mathrm{e} 747(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{~d}+80.70^{\circ}(\mathrm{c}=0.228$, MeOH$)$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{5}, \mathrm{MW} 746.87$: C, 72.37; H, 5.68; $\mathrm{N}, 11.25$. Found: C, 72.56; H, 5.28; N, 11.16.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-2-pyridinylbenzamide] Dihydrochloride (18a). A solution of $\mathbf{1 c}(2.0 \mathrm{~g}, 3.15 \mathrm{mmol})$ in 75 mL of EtOAc, HOBt ($0.98 \mathrm{~g}, 7.24 \mathrm{mmol}$), and DCC ($1.49 \mathrm{~g}, 7.24 \mathrm{mmol}$) was stirred for 30 min , treated with 2-ami nopyridine (1.48 g, 15.75 mmol), and stirred for 24 h . TLC (hexanes-EtOAc, 3:7) showed a mixture of bis-OBt ester $\left\{{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\right.$ TMS) $\delta 1.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.05(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.38(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.86(\mathrm{~d}, \mathrm{~J}=10.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right), 4.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 4.88(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}),[7.0(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~m}, 8 \mathrm{H}), 7.4-7.65(\mathrm{~m}, 8 \mathrm{H}), 8.06(\mathrm{~m}$, $4 \mathrm{H}), 8.16(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}] ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} /$ e $869(\mathrm{M}+1), 886$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right)$ for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{7}, \mathrm{MW}$ 868.96\}, OBt ester/2-aminopyridine benzamide $\left\{{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{TMS}\right) \delta 1.41\right.$ (s , $\left.6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right), 2.85-3.1\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right), 3.25-3.43(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NCH}), 3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right), 4.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 4.85(\mathrm{~m}, 2 \mathrm{H}$, NCH), [6.9 (d, 1H), $7.03(\mathrm{~d}, 4 \mathrm{H}), 7.26(\mathrm{~m}, 7 \mathrm{H}), 7.35-7.6(\mathrm{~m}$, $5 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.2(\mathrm{~m}, 6 \mathrm{H}), \mathrm{Ar}], 8.52(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 828(\mathrm{M}+1)$ for $\mathrm{C}_{49} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{6}, \mathrm{MW}$ 827.95\}, and the desired bis-2-aminopyridine benzamide acetonide. The mixture was filtered to remove the DCU, the filtrate was treated with triethylamine (1 g), and stirring was continued until all of the bis-OBt ester and the OBt ester/2aminopyridine benzamide had been converted to the desired bis-benzamide (1-4 days) as indicated by TLC (hexanesEtOAc, 3:7). The mixture was diluted with 100 mL of water, and the organic phase was washed with water, $5 \% \mathrm{NaHCO}_{3}$, water, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to an impure solid. The crude product was column chromatographed on silica gel ($100 \mathrm{~g} / 1 \mathrm{~g}$ crude material) using CHCl_{3}-EtOAc (7:3) as mobile phase. Appropriate fractions were collected, combined, and concentrated to give the desired intermediate as a white foam in $88 \%(2.17 \mathrm{~g})$ yield: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 1.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CCH}_{3}\right.$), 2.74 (dd, $\left.2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.32(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}), 4.03\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right), 4.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH})$, $4.60(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.91(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 8 \mathrm{H})$, $7.48(\mathrm{~m}, 4 \mathrm{H}), 8.83(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 8.17(\mathrm{~d}$, 2H), 8.40 (d, 2H), Ar], 10.79 (s, 2H, NH); IR (Nujol) 3246 (NH), $1680(\mathrm{C}=\mathrm{O}), 1631(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} /$ e $787(\mathrm{M}+$ 1) for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5}$, MW 786.35.

The acetonide ($1.93 \mathrm{~g}, 2.45 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was treated with 10 mL of 1 N HCl and stirred at room temperature until no starting material remained as demonstrated by TLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1\right)$. The mixture was concentrated in vacuo at $60^{\circ} \mathrm{C}$ to give a white solid which was triturated with 10 mL of water and placed in the cold for 16 h . The resulting crystals were collected by filtration, washed with a small amount of cold water, and air-dried to give the desired product
in $77 \%(1.415 \mathrm{~g})$ yield (68% yield from $\mathbf{1 c}$): $\mathrm{mp} 158-161^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 2.77$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $2.99\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.07(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}$, NCH), $3.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}), 3.60\left(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right)$, $4.68(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.95(\mathrm{~d}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H})$, $7.4(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{dd}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}), 8.16(\mathrm{~m}$, $4 \mathrm{H}), 8.45$ (d, 2H) , Ar], 11.59 (s, 2H, NH); IR (Nujol) $3334(\mathrm{OH})$, $1676(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e} 747(\mathrm{M}+$ 1); $[\alpha]^{20} \mathrm{D}+57.14^{\circ}(\mathrm{c}=0.098$, DMSO). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 2 \mathrm{HCl}, \mathrm{MW}$ 819.80: C, 65.93; H, 5.41; N, 10.25. Found: C, 65.72; H, 5.64; N, 10.10.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-2-pyridinylbenzamide] (18b). A solution of 18a ($0.240 \mathrm{~g}, 0.030 \mathrm{mmol}$) in 10 mL of acetonitrile was treated with 10 mL of 1 N HCl and stirred at room temperature until no starting material remained (2.5 h) as evidenced by TLC ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 9: 1$). The mixture was made alkaline with $5 \% \mathrm{NaHCO}_{3}$ and stirred at room temperature for an additional 3 h . The resulting white solid was collected by filtration, washed with water, and air dried to give the desired product in $91 \%(0.2046 \mathrm{~g})$ yield: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSOd_{6} TMS) $\delta 2.78$ (dd, 2H, $\mathrm{Ar}^{\prime} \mathrm{CH}$), 3.0 (m, 4H, Ar'CHCNCH), $3.5(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.64(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.16(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.2(\mathrm{~m}, 8 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}), 7.44(\mathrm{dd}, 2 \mathrm{H})$, 7.85 (m, 4H), 7.95 (d, 2H), 8.18 (d, 2H), 8.40 (d, 2H), Ar], 10.77 (s, 2H, NH); IR (Nujol) 3397 (OH), $1678(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{O})$ cm^{-1}; UV-vis $(c=0.0149 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 281$ (29686), 246 (25 352), 214 (57 591) nm; MS (NH_{3}-DCI) m/e 747 ($\mathrm{M}+$ 1). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{5}, \mathrm{MW} 746.78$: C, 72.37; $\mathrm{H}, 5.67$; $\mathrm{N}, 11.25$. Found: C, 71.98; H, 5.98; N, 11.06.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0x0-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(3-methyl-2-pyridinyl)benzamide] (19). By substituting 2-amino-3-picoline in the Weinreb method described for 15, the desired product was obtained in 24\% (0.296 g) yield: mp $142-143^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\mathrm{d}_{6} \mathrm{TMS}$) $\delta 2.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.81$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.0 (m, $\left.4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.5\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCHCH}(\mathrm{OH})\right), 4.68(\mathrm{~d}, \mathrm{~J}=$ $14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 8 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.48 (dd, 2H), 7.72 (d, 2H), 7.86 (s, 2H), 7.92 (d, 2H), 8.31 (d, 2H), Ar], 10.56 (s, 2H, NH); IR (Nujol) 3420 (OH), 1674 (C=O), $1630(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 775(\mathrm{M}+1), 388(\mathrm{M}+$ $2 \mathrm{H})^{2+} ;[\alpha]^{20}{ }_{\mathrm{D}}+86.49^{\circ}(\mathrm{c}=0.074, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 792.94,774.93: \mathrm{C}, 71.19 ; \mathrm{H}, 6.10 ; \mathrm{N}$, 10.60. Found: C, 71.27; H, 6.05; N, 10.49.
(4 $\alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0xo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(4-methyl-2-pyridinyl)benzamide] (20). By substituting 2-amino-4-picoline in the Weinreb method for 15, the desired product was obtained in $18 \%(0.221 \mathrm{~g})$ yield: mp 139-140 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 2.37$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}$), 2.79 (m, 2H, Ar'CH), 3.0 (m, 4H, Ar'CHCNCH), $3.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCHCHO}\right), 4.68(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH})$, [6.97 (m, 4H), $7.05(\mathrm{~d}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~d}, 2 \mathrm{H}), 7.47$ (dd, 2H), 7.88 (s, 2H), $7.96(d, 2 H), 8.00(\mathrm{~s}, 2 \mathrm{H}), 8.25(\mathrm{~d}, 2 \mathrm{H})$, Ar], 10.85 (s, 2H, NH); IR (Nujol) 3385 (OH), 1678 (C=O), 1650 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; ~ U V-$ vis $(\mathrm{c}=0.0190 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 280$ (28 631), 256 (24 226), 216 (50 778) nm; MS ($\mathrm{NH}_{3}-\mathrm{DCI}$) m/e $775(\mathrm{M}+1), 388(\mathrm{M}+2 \mathrm{H})^{2+} ;[\alpha]^{20} \mathrm{D}+80.00^{\circ}(\mathrm{c}=0.080, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 791.94: \mathrm{C}, 70.39 ; \mathrm{H}$, 6.16; N, 10.48. F ound: C, 70.56; H, 6.08; N, 10.36.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0x0-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[\mathbf{N}-(5-methyl-2-pyridinyl)benzamide] (21). By substituting 2-amino-5-picoline in the Weinreb method for 15, the desired product was obtained in $13 \%(0.157 \mathrm{~g})$ yield: $\mathrm{mp} 132-133^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$ TMS) $\delta 2.28$ (s, 6H, ArCH_{3}), 2.78 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $3.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CHC}-\right.$ $\mathrm{NCH}), 3.45(2, \mathrm{OH}), 3.5\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCHCHO}\right), 4.68(\mathrm{~d}, \mathrm{~J}=$ $14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.96(\mathrm{~d}, 4 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H})$, 7.46 (dd, 2H), 7.68 (m, 2H), 7.87 (s, 2H), 7.95 (d, 2H), 8.08 (d, 2H), 8.22 (s, 2H), Ar], 10.72 (s, 2H, NH); IR (Nujol) 3392 (OH), $1676(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis $(\mathrm{c}=0.0170 \mathrm{mg} / \mathrm{mL}$, $\mathrm{MeOH}) \lambda_{\max } 287$ (28 399), 258 (24 980), 215 (50 962) nm; MS $\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 775(\mathrm{M}+1), 388(\mathrm{M}+2 \mathrm{H})^{2+} ;[\alpha]^{20} \mathrm{D}+82.93^{\circ}$
($\mathrm{C}=0.082$, MeOH). Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW}$ 783.93: C, 72.01; H, 6.04; N, 10.72. F ound: C, 71.84; H, 6.08; N, 10.47.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0xo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(6-methyl-2-pyridinyl)benzamide] (22). By substituting 2-amino-6-pi coline in the Weinreb method for 15, the desired product was obtained in $17 \%(0.219 \mathrm{~g})$ yield: mp 135-136 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$ TMS) $\delta 2.47$ (s, 6H, ArCH_{3}), 2.76 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 3.0 (m, $4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CHC}-$ NCH), 3.55 (m, 4H, Ar'CCHCHO), 4.6 (br s, 2H, OH), 4.68 (d, $\mathrm{J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}), 7.2(\mathrm{~m}$, $6 \mathrm{H}), 7.40$ (d, 2H), 7.46 (dd, 2H), 7.79 (dd, 2H), 7.89 (s, 2H), 8.0 (m, 4H), Ar], 10.80 (s, 2H, NH); IR (Nujol) 3385 (OH), ~1660 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{UV}-\mathrm{vis}(\mathrm{c}=0.0200 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 285$ (29 408), 251 (19 412), 216 (45 178) nm; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e}$ $775(\mathrm{M}+1), 388(\mathrm{M}+2 \mathrm{H})^{2+} ;[\alpha]^{20} \mathrm{D}+81.69^{\circ}(\mathrm{c}=0.142, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MW}$ 792.94: C, 71.19; H , 6.10; $\mathrm{N}, 10.60$. F ound: C, 71.02; H, 6.04; $\mathrm{N}, 10.39$.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(4,6-dimethyl-2-pyridinyl)benzamide] (23). By substituting 2-amino-4,6-dimethylpyridine in the DCC-HOBt method for 8, the desired product was obtained in 66% yield from 1c: mp $166-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} \mathrm{TMS}$) $\delta 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.51(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.78\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.00(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.07(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.6(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH})$, $4.67(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}),[6.94(\mathrm{~d}, 4 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H})$, 7.2 (m, 6H), 7.42 (d, 2H), 7.51 (dd, 2H), 7.92 (s, 2H), 7.96 (s, $2 \mathrm{H}), 8.05(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}], 11.27(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ; \mathrm{IR}(\mathrm{KBr}) 3418(\mathrm{OH}$, $1680(\mathrm{C}=\mathrm{O}), 1644(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} /$ e $803(\mathrm{M}+$ 1); $[\alpha]^{20_{D}}+74.66^{\circ}(c=0.446, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{5} \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$, MW 866.00: C, 67.95; H, 6.64; N, 9.71. Found: C, 67.72; H, 6.26; N, 9.66.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[N -(5-chloro-2-pyridinyl)benzamide] (24). By substituting 2-amino-5-chloropyridine in the Weinreb method for 15, the desired product was isolated in 85\% (1.042 g) yield: mp $261-264{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$ TMS) $\delta 2.77$ (dd, 2H, Ar'CH), $2.98\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right.$), 3.04 $(\mathrm{d}, \mathrm{J}=14.28 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.52(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.68(\mathrm{~d}$, $\mathrm{J}=14.28 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.15(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.22$ (m, 6H), $7.39(d, 2 H), 7.47(d d, 2 H), 7.87(s, 2 H), 7.95(d, 4 H)$, $8.223(\mathrm{~d}, 2 \mathrm{H}), 8.44(\mathrm{~d}, 2 \mathrm{H}), \mathrm{Ar}], 10.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3420(\mathrm{OH}, \mathrm{NH}), 1680(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e} 832(\mathrm{M}$ $\left.+\mathrm{NH}_{4}\right) ;[\alpha]^{20} \mathrm{D}+59.13^{\circ}(\mathrm{c}=0.504$, DMSO). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.53 ; \mathrm{H}, 5.01 ; \mathrm{N}, 10.19$. F ound: C, 65.34; H, 4.82; N, 10.00.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(3,5-dichloro-2-pyridinyl)benzamide] (25). By substituting 2-amino-3,5-dichloropyridine in the Weinreb method for 15, the desired product was isolated in 66\% yield from 1b: mp $238-241^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6 TMS) $\delta 2.79$ (dd, 2H, Ar'CH), 3.01 (m, 4H, Ar'CHCNCH $), 3.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.65(\mathrm{~d}, \mathrm{~J}=13.92 \mathrm{~Hz}, 2 \mathrm{H}$, NCH), $5.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, [6.94 (d, 4H), $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~d}$, $2 \mathrm{H}), 7.49$ (dd, 2H), 7.83 (s, 2H), 7.89 (d, 2H), 8.34 (d, 2H), 8.54 (d, 2H), Ar], 10.83 (s, 2H,NH); IR (KBr) 3420 (OH, NH), 1680 $(\mathrm{C}=\mathrm{O}), 1644(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} /$ e $885(\mathrm{M}+1)$, $902\left(\mathrm{M}+\mathrm{NH}_{4}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+53.87^{\circ}(\mathrm{c}=0.698$, DMSO). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Cl}_{4}, \mathrm{MW}$ 884.65: C, 61.10; H, 4.33; N, 9.50; $\mathrm{Cl}, 16.03$. Found: C, 61.41; H, 4.35; N, 9.31; CI, 16.04.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(5-bromo-2-pyridinyl)benzamide] Monohydrate (26). By substituting 2-amino-5-bromopyridine in the modified Weinreb method for 15, the desired product was obtained in $30 \%(0.406 \mathrm{~g})$ yield: $\mathrm{mp} 162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 2.77$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $3.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.5(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.68(\mathrm{~d}, \mathrm{~J}=$ $13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH})$, [6.95 (d, 4H), 7.2 (m, 6H), 7.38 (d, 2H), 7.47 (dd, 2H), $7.87(\mathrm{~s}, 2 \mathrm{H}), 7.93(\mathrm{~m}, 2 \mathrm{H}), 8.19(\mathrm{~d}, 2 \mathrm{H}), 8.51(\mathrm{~m}$, 2H), Ar], 10.98 (s, 2H, NH); IR (KBr) 3422 (OH, NH), 1688
$(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 922\left(\mathrm{M}+\mathrm{NH}_{4}\right)$; $[\alpha]^{20_{D}}+51.30^{\circ}\left(c=0.31\right.$, DMSO). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{5}-$ $\mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, MW 922.68: C, 58.58; H, 4.59; N, 9.11; Br, 17.32. Found: C, 58.51; H, 4.22; N, 8.99; Br, 17.43.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0xo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(4-methyl-2-pyrimidinyl)benzamide] Sesquihydrate (27). By substituting 2-amino-4methylpyrimidine in the modified Weinreb method for 15, the desired product was obtained in 24% (0.245 g) yield: mp 154$159{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6} \mathrm{TMS}$) $\delta 2.47(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.79$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $3.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.35(\mathrm{~s}$, HOD), $3.5(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.68(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH})$, $5.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.95(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 6 \mathrm{H})$, 7.35 (d, 2H), 7.46 (dd, 2H), $7.83(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, 2 \mathrm{H}), 8.55(\mathrm{~d}$, 2H), Ar], $10.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; IR (KBr) $3420(\mathrm{OH}$ and NH), 1694 $(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 777(\mathrm{M}+1)$; $[\alpha]^{20_{D}}+68.22^{\circ}(c=0.26, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{O}_{5} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, MW 803.89: C, 67.24; H, 5.89; N, 13.94. Found: C, 67.05; H, 5.58; N, 13.72.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[\mathbf{N}-[5-(trifluoromethyl)-2-pyridinyl]benzamide] (28). By substituting 2-amino-5-(trifluoromethyl)pyridine in the acid chloride method for 14 , the desired product was obtained in 22% overall yield: mp $251-252^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }_{6}$ TMS) $\delta 2.75$ (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), 2.98 (m, $\left.2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.05$ (d, J = $\left.14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}\right), 3.56(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CHCHCHCH}), 4.68(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.15(\mathrm{~s}, 2 \mathrm{H}$, OH), [6.95 (d, 4H), $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.40(\mathrm{~d}, 2 \mathrm{H}), 7.48(\mathrm{dd}, 2 \mathrm{H})$, $7.88(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~d}, 2 \mathrm{H}), 8.23(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{~d}, 2 \mathrm{H}), 8.78(\mathrm{~s}$, 2H), Ar], 11.27 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}$); UV-vis (c $=0.0190 \mathrm{mg} / \mathrm{mL}$, MeOH) $\lambda_{\max } 282(36476), 254$ (32 387) nm; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{5}+883.306$ 949, found 883.305332.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0x0-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-2-pyrazinylbenzamide] (29). By substituting 2-aminopyrazine in the Weinreb method for 15, the desired product was obtained in $58 \%(0.659 \mathrm{~g})$ yield from $\mathbf{1 b}$: mp $146-148{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} TMS) $\delta 2.77$ (dd, 2H, Ar'CH), $2.99\left(d, J=13.18 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 3.07$ (d, J $=14.28 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.69(\mathrm{~d}, \mathrm{~J}=$ $14.28 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.22(\mathrm{~m}$, $6 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}), 7.50(\mathrm{dd}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.98(\mathrm{~d}, 2 \mathrm{H}), 8.42$ (d, 2H), $8.48(\mathrm{~d}, 2 \mathrm{H}), 9.41(\mathrm{~s}, 2 \mathrm{H}), \mathrm{Ar}], 11.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;$ IR (KBr) $4312(\mathrm{OH}), 1686(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UV-vis $(\mathrm{c}=$ $0.0210 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 298$ (20 076), 284 (25 140), 245 (25 140), 217 (42 898) nm; MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 749(\mathrm{M}+1)$, $375(\mathrm{M}+2)^{2+} ;[\alpha]^{20}{ }_{\mathrm{D}}+78.57^{\circ}(\mathrm{c}=0.084, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{5}, \mathrm{MW} 748.84: \mathrm{C}, 68.97$; $\mathrm{H}, 5.38 ; \mathrm{N}, 14.96$. Found: C, 68.70; H, 5.38; N, 14.72.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-0x0-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-2-pyrimidinylbenzamide] (30). Alternate Method. By substituting 2-aminopyrimidine in the Weinreb method for 15, the desired product was obtained in 81% yield from 1b: mp $149-151{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6 TMS) $\delta 2.80$ (dd, 2H, Ar'CH), 2.99 (m, 4H, Ar'CHCNCH), $3.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.69(\mathrm{~d}, \mathrm{~J}=13.92 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}), 5.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}),[6.95(\mathrm{~d}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 8 \mathrm{H}), 7.37(\mathrm{~d}$, $2 \mathrm{H}), 7.47$ (dd, 2H), 7.83 (s, 2H), 7.94 (d, 2H), 8.73 (d, 4H), Ar], 11.01 (s, 2H,NH); IR (KBr) 3410 (OH,NH), 1694 ($\mathrm{C}=\mathrm{O}$), 1638 $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 749(\mathrm{M}+1), 375(\mathrm{M}+2)^{2+}$; $[\alpha]^{20_{D}}+80.75^{\circ}(\mathrm{c}=0.40, \mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{5}$, MW 748.85: C, 68.97; H, 5.38; N, 14.96. Found: C, 68.98; H, 5.53; N, 14.75 .

Alternatively, by substituting 2-aminopyrimidine in the method for 8, the desired product was obtained in 7\% (0.055 g) yield: $\mathrm{mp} 147{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{TMS}$) δ $2.93(\mathrm{~m}, 2 \mathrm{H}), 3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}_{2}\right), 3.31(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}), 3.68$ (d, J $\left.=10.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CCH}\right), 3.94(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH})$, $4.76(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 6.95-8.2(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ar}, \mathrm{NH})$; IR (Nujol) $3410(\mathrm{OH}), 1798(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; MS ($\mathrm{NH}_{3}-$ $\mathrm{DCl}) \mathrm{m} /$ e $749(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{5}$, MW 748.85: C, 68.97; H, 5.38; N, 14.96. Found: C, 69.01; H, 5.43; N, 14.88.
(4 $\alpha, 5 \alpha, 6 \beta, 7 \beta)-3,3$-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis(methylene)]bis[$\mathbf{N}, \mathbf{N}^{\prime}$-dimethylbenzamide] (31). By substituting dimethylamine in the BOP method, the desired product was obtained in 94\% yield as a glass: ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ TMS) $\delta 2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right), 2.9-3.03(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{Ar}^{\prime} \mathrm{CH}, \mathrm{NCH}\right), 3.38\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCH}-$ $\mathrm{CHCH}), 4.56(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 5.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$, 6.8-7.7 (m, 18H, Ar); MS ($\left.\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 649(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{MW}$ 648.81: C, 72.20; H, 6.84; N, 8.64. Found: C, 71.89; H, 7.02; N, 8.57.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3'-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-(4-methyl-2-oxazolyl)benzamide] (Test1). By substituting 2-amino-4-methyloxazole in the DCCHOBt method, the desired product was obtained in 8% yield: mp 155-157 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d 6 TMS) δ 2.08 (s, 6H, CH_{3}), 2.76 (dd, $2 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}$), $3.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}^{\prime} \mathrm{CH}\right.$, $\mathrm{NCH}), 3.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}), 4.65(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH})$, $5.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.9-7.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 11.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;$ IR (KBr) $3420(\mathrm{OH}, \mathrm{NH}), 1694(\mathrm{C}=\mathrm{O}), 1602(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; UVvis $(c=0.0160 \mathrm{mg} / \mathrm{mL}, \mathrm{MeOH}) \lambda_{\max } 267(19862), 218$ (41 187) $\mathrm{nm} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCI}\right) \mathrm{m} / \mathrm{e} 755(\mathrm{M}+1) ;[\alpha]^{20} \mathrm{D}+78.75^{\circ}(\mathrm{c}=0.08$, $\mathrm{MeOH})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{7} 0.5 \mathrm{H}_{2} \mathrm{O}, \mathrm{MW} 763.82$: C, 67.61; H, 5.67; N, 11.00. Found: C, 67.30; H, 5.60; N, 10.76.
($4 \alpha, 5 \alpha, 6 \beta, 7 \beta$)-3,3-[[Tetrahydro-5,6-dihydroxy-2-oxo-4,7-bis(phenylmethyl)-1H-1,3-diazepine-1,3(2H)-diyl]bis-(methylene)]bis[N-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]benzamide] (Test-2). By substituting 2-amino-5-(tri-fluoromethyl)-1,3,4-thiadiazole in the DCC-HOBt method, the desired product was obtained in 91% yield: mp $196^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$ TMS) $\delta 2.79$ (m, 2H, Ar ${ }^{\prime} \mathrm{CH}$), 3.04 (m, 2H, Ar'CH), 3.36 (d, J $=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}), 3.45-$ $3.75(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHCHCHCH}), 4.62(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH})$, $5.23(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.9-8.3(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}), 8.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, DMSO-d ${ }^{2}$ TMS) $\delta-58.739$; IR (Nujol) 3464 (OH, NH), $1648(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{DCl}\right) \mathrm{m} / \mathrm{e} 897(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S}_{2}, \mathrm{MW}$ 896.89: C, 54.91; H, 3.82; N, 12.49. Found: C, 54.86; H, 4.01; N, 12.38.

Acknowledgment. The authors would like to thank Ronald Klabe and J ames Meek for providing the protease inhibition K_{i} values and Lee Bacheler and Beverly Cordova for providing the viral replication inhibition I $_{90}$ values.

References

(1) Ueno, T.; Mitsuya, H. Current Status of the Development of HIV Protease Inhibitors and Their Clinical Potential. Clin. Immunother. 1995, 4, 451-461.
(2) Wilkerson, W. W.; Hollis, A. Y.; Cheatham, W. W.; Lam, G. N.; Erickson-Viitanen, S.; Bacheler, L.; Cordova, B. C.; Klabe, R. M.; M eek, J. L. A Bis-[N-3-(1-Hydroxy-1-methyl-ethyl)-benzyl]Cyclic Urea As A HIV Protease Inhibitor. BioMed. Chem. Lett. 1995, 5, 3027-3032.
(3) Lam, P. Y.; Eyermann, C. J.; Hodge, C. N.; J adhav, P. K.; DeLucca, G. V. New Cyclic Urea and Derivatives for Pharmaceutical Compositions Used as Retroviral Protease Inhibitors, used to Treat HIV and Viral Infections. WO 9307128-A1, 1993.
(4) Lam, P. Y. S.; J adhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; J ackson, D. A.; Sharp, T. R.; Erickson-Viitanen, S. Rational Design of Potent, Bioavailable, Non-peptide Cyclic Ureas as HIV Protease Inhibitors. Science 1994, 263, 380-284.
(5) Noller, C. M. In Organic Synthesis Collective Volume; Blatt, A. H., Ed.; J ohn Wiley \& Sons: New Y ork, 1943; Collect. Vol. II, p 586.
(6) Coste, J.; Campagne, J.-M. A Propos de l'Estérification des Acides Carboxyliques par le BOP ou le PyBOP. (Esterification of carboxylic acids by BOP or PyBOP.) Tetrahedron Lett. 1995, 36, 4253-4256.
(7) Basha, A.; Lipton, M.; Weinreb, S. M. A Mild, General Method for Conversion of Esters to Amides. Tetrahedron Lett. 1977, 4171-4174.
(8) Cheng, Y.-S. E.; Yin, F. H.; Foundling, S.; Blomstrom, D.; Kettner, C. A. Stability and Activity of Human Immunodeficiency Virus Protease: Comparison of the Natural Dimer with a Homologous, Single-chain Tethered Dimer. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9660-9664.
(9) Erickson-Viitanen, S.; Manfredi, J.; Viitanen, P.; Tribe, D. E.; Tritch, R.; Hutchison, C. A., III; Loeb, D. D.; Swanstrom, R. Cleavage of HIV-1 gag Polyprotein Synthesized In Vitro: Sequential Cleavage by Viral Protease. AIDS Res. Hum. Retroviruses 1989, 5, 577-591.
(10) Bacheler, L.; Paul, M.; Otto, M. J.; J adhav, P. K.; Stone, B. A.; Miller, J. A. An Assay for HIV RNA in Infected Cell Lysates, and Its Use for the Rapid Evaluation of Antiviral Efficacy. Antiviral Chem. Chemother. 1994, 5, 111-121.
(11) Steward, J. J. P. M OPAC: A Semiemperical Molecular Orbital Program. J . Comput.-Aided Mol. Des. 1990, 4, 1-105.
(12) Waller, C. L.; Oprea, T. I.; Giolitti, A.; Marshall, G. R. ThreeDimensional QSAR of Human Immunodeficiency Virus (I) Protease Inhibitors. 1. A CoMFA Study Employing Experimen-tally-Determined Alignment Rules. J. Med. Chem. 1993, 36, 4152-4160.
(13) Oprea, T. I.; Waller, C. L.; Marshall, G. R. Three-Dimensional Quantitative Structure-Activity Relationship of Human Immunodeficiency Virus (I) Protease Inhibitors. 2. Predictive Power Using Limited Exploration of Alternate Binding Modes. J. Med. Chem. 1994, 37, 2206-2215.
(14) Swain, C. G.; Lupton, E. C., J r. Field and Resonance Components of Substituent Effects. J. Am. Chem. Soc. 1968, 90, 4328-4337.
(15) Martin, Y. C. QuantitativeDrug Design. A Critical Introduction; Marcel Dekker, Inc.: New Y ork, 1978; Vol. 8, pp 95-97.
(16) Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR. Hydrophobic, Electronic, Steric Constants; American Chemical Society: Washington, DC, 1995.
(17) Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; J ohn Wiley and Sons: New York, 1979.
(18) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J." "Aromatic" Substituent Constants for Structure Activity Correlations. J. Med. Chem. 1973, 16, 1207-1216.
(19) Topliss, J. G.; Costello, R. J. Chance Correlations in StructureActivity Studies Using Multiple Regression Analysis. J. Med. Chem. 1972, 15, 1066-1068.
(20) Topliss, J. G.; Edwards, R. P. Chance Factors in Studies of Quantitative Structure-Activity Relationships. J. Med. Chem. 1979, 22, 1238-1244.
(21) Hansch, C.; Leo, A. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, DC, 1995.
(22) Kim, K. H. In 3D QSAR in Drug Design; Kubinyi, H., Ed.; ESCOM: Leiden, 1993; pp 619-642.
(23) Franke, R. Theoretical Drug Design Methods; Elsevier: Amsterdam, 1984; Vol. 7, pp 313-363.
(24) Test-1- test-8 were synthesized contemporaneously with this study and not used to generate the regression models. They were used to test the predictability of eqs 3 and 4. Test-1 and $\mathbf{- 2}$ are characterized in the Experimental Section. Test-3-test-8 are the subject of another publication (manuscript in preparation) by P. K. J adhav of these laboratories.
(25) Livington, D. J.; Pazhanisamy, S.; Porter, D. J.; Partaledis, J. A.; Tung, R. D.; Painter, G. R. Weak Binding of VX-478 to Human Plasma Proteins and Implications for Anti-Human Immunodeficiency Virus Therapy. J . Infect. Dis. 1995, 172, 238245.
(26) Kempf, D. J.; Marsh, K. C.; Denissen, J.; McDonald, E.; Vasavanonda, S.; Flentge, C.; Green, B. G.; Fino, L.; Park, C.; K ong, X.; Wideburg, N. E.; Saldiva, A.; Ruiz, L.; Kati, W. M.; Sham, H. L.; Robins, T.; Stewart, K. D.; Plattner, J.J .; Leonard, J.; Norbeck, D. ABT-538 is a Potent Inhibitor of Human Immunodeficiency Virus Protease with High Oral Bioavailability in Humans. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2484-2488.
(27) Galpin, S.; Roberts, N. A.; O'Connor, T.; J effereies, D. J.; Kinchington, D. Antiviral Properties of the HIV-1 Protease Inhibitor Ro 31-8959. Antiviral Chem. Chemother. 1994, 5, 4345.
(28) Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.; McDaniel, S. L.; Darke, P. L.; Zugay, U. J.; Quintero, J. C.; Blahy, O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J .; Graham, P. I.; Condra, J. H.; Gotlieb, L.; Holloway, M. K.; Lin, J .; Chen, I.-W.; Vastag, K.; Ostovic, D.; Anderson, P. S.; Emini, E. A.; Huff, J . R. L-735,524: An Orally Bioavailable Human Immunodeficiency Virus Type 1 Protease Inhibitor. Proc. NatI. Acad. Sci. U.S.A. 1994, 91, 4096-4100.
(29) De Clercq, E. Toward Improved Anti-HIV Chemotherapy: Therapeutic Strategies for Intervention with HIV Infections. J. Med. Chem. 1995, 38, 2491-2517.
J M9602773

[^0]: * Address for correspondence: Dextron Corp., P.O. Box 713, Bear, DE 19710-0713.

